IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp263-276.html
   My bibliography  Save this article

Numerical and experimental investigations of dust effect on CSP performance under United Arab Emirates weather conditions

Author

Listed:
  • Hachicha, Ahmed Amine
  • Al-Sawafta, Israa
  • Ben Hamadou, Dhouha

Abstract

Dust is one of the main challenges in implementing concentrating solar power (CSP) systems in arid and semi-arid zones. The characterization of dust particles and the measure of the soiling loss effects under real operating conditions can be useful to select the appropriate cleaning methods and frequency. In this study, experimental and numerical investigations were carried out to study the characteristics of dust particles and their effects on the CSP performance under UAE weather conditions. The results showed that the soiling rate is correlated to the wind speed and direction. The monthly soiling effect was evaluated for 5 months of exposure with the highest decrease recorded in March. The results of cumulative dust experiment showed a drop in specular reflectivity by about 63% after 3 months of exposure. Based on the experimental data, the power soiling loss and thermal performance were determined for a parabolic trough solar collector. The predicted results were in consistence with the dust accumulation leading to a 36% decrease in thermal efficiency. In addition, the power soiling loss was compared with that of PV technology, and it was found that soiling effect is more pronounced in CSP systems by 3–5 times drop in performance.

Suggested Citation

  • Hachicha, Ahmed Amine & Al-Sawafta, Israa & Ben Hamadou, Dhouha, 2019. "Numerical and experimental investigations of dust effect on CSP performance under United Arab Emirates weather conditions," Renewable Energy, Elsevier, vol. 143(C), pages 263-276.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:263-276
    DOI: 10.1016/j.renene.2019.04.144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119306287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sahar Bouaddi & Aránzazu Fernández-García & Chris Sansom & Jon Ander Sarasua & Fabian Wolfertstetter & Hicham Bouzekri & Florian Sutter & Itiziar Azpitarte, 2018. "A Review of Conventional and Innovative- Sustainable Methods for Cleaning Reflectors in Concentrating Solar Power Plants," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    2. Gherboudj, Imen & Ghedira, Hosni, 2016. "Assessment of solar energy potential over the United Arab Emirates using remote sensing and weather forecast data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1210-1224.
    3. Christo, Farid C., 2012. "Numerical modelling of wind and dust patterns around a full-scale paraboloidal solar dish," Renewable Energy, Elsevier, vol. 39(1), pages 356-366.
    4. Adinoyi, Muhammed J. & Said, Syed A.M., 2013. "Effect of dust accumulation on the power outputs of solar photovoltaic modules," Renewable Energy, Elsevier, vol. 60(C), pages 633-636.
    5. Bouaddi, S. & Ihlal, A. & Fernández-García, A., 2017. "Comparative analysis of soiling of CSP mirror materials in arid zones," Renewable Energy, Elsevier, vol. 101(C), pages 437-449.
    6. Hachicha, Ahmed Amine & Al-Sawafta, Israa & Said, Zafar, 2019. "Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions," Renewable Energy, Elsevier, vol. 141(C), pages 287-297.
    7. Serrano-Aguilera, J.J. & Valenzuela, L. & Parras, L., 2014. "Thermal 3D model for Direct Solar Steam Generation under superheated conditions," Applied Energy, Elsevier, vol. 132(C), pages 370-382.
    8. Sarver, Travis & Al-Qaraghuli, Ali & Kazmerski, Lawrence L., 2013. "A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 698-733.
    9. Said, Zafar & Alshehhi, Abdulla A & Mehmood, Aamir, 2018. "Predictions of UAE's renewable energy mix in 2030," Renewable Energy, Elsevier, vol. 118(C), pages 779-789.
    10. Hachicha, Ahmed Amine & Rodríguez, Ivette & Ghenai, Chaouki, 2018. "Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation," Applied Energy, Elsevier, vol. 214(C), pages 152-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Chenyang Wang & Jialin Guo & Jingyu Li & Xiaomei Zeng & Vasiliy Pelenovich & Jun Zhang & Bing Yang & Xianbin Wang & Yu Du & Yikun Lei & Naibing Lu, 2023. "Microstructure of Surface Pollutants and Brush-Based Dry Cleaning of a Trough Concentrating Solar Power Station," Energies, MDPI, vol. 16(7), pages 1-15, April.
    3. Yan, Suying & Zhao, Sitong & Ma, Xiaodong & Ming, Tingzhen & Wu, Ze & Zhao, Xiaoyan & Ma, Rui, 2020. "Thermoelectric and exergy output performance of a Fresnel-based HCPV/T at different dust densities," Renewable Energy, Elsevier, vol. 159(C), pages 801-811.
    4. Alami Merrouni, Ahmed & Conceição, Ricardo & Mouaky, Ammar & Silva, Hugo Gonçalves & Ghennioui, Abdellatif, 2020. "CSP performance and yield analysis including soiling measurements for Morocco and Portugal," Renewable Energy, Elsevier, vol. 162(C), pages 1777-1792.
    5. Ghodbane, Mokhtar & Said, Zafar & Hachicha, Ahmed Amine & Boumeddane, Boussad, 2020. "Performance assessment of linear Fresnel solar reflector using MWCNTs/DW nanofluids," Renewable Energy, Elsevier, vol. 151(C), pages 43-56.
    6. Anderson, Cody B. & Picotti, Giovanni & Cholette, Michael E. & Leslie, Bruce & Steinberg, Theodore A. & Manzolini, Giampaolo, 2023. "Heliostat-field soiling predictions and cleaning resource optimization for solar tower plants," Applied Energy, Elsevier, vol. 352(C).
    7. Azouzoute, Alae & Zitouni, Houssain & El Ydrissi, Massaab & Hajjaj, Charaf & Garoum, Mohammed & Bennouna, El Ghali & Ghennioui, Abdellatif, 2021. "Developing a cleaning strategy for hybrid solar plants PV/CSP: Case study for semi-arid climate," Energy, Elsevier, vol. 228(C).
    8. Hachicha, Ahmed Amine & Said, Zafar & Rahman, S.M.A. & Al-Sarairah, Eman, 2020. "On the thermal and thermodynamic analysis of parabolic trough collector technology using industrial-grade MWCNT based nanofluid," Renewable Energy, Elsevier, vol. 161(C), pages 1303-1317.
    9. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    10. Wu, Ze & Yan, Suying & Wang, Zefeng & Ming, Tingzhen & Zhao, Xiaoyan & Ma, Rui & Wu, Yuting, 2020. "The effect of dust accumulation on the cleanliness factor of a parabolic trough solar concentrator," Renewable Energy, Elsevier, vol. 152(C), pages 529-539.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    3. Hachicha, Ahmed Amine & Al-Sawafta, Israa & Said, Zafar, 2019. "Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions," Renewable Energy, Elsevier, vol. 141(C), pages 287-297.
    4. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. Soares, João & Oliveira, Armando C. & Valenzuela, Loreto, 2021. "A dynamic model for once-through direct steam generation in linear focus solar collectors," Renewable Energy, Elsevier, vol. 163(C), pages 246-261.
    6. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    7. Khaled M. Alawasa & Rashid S. AlAbri & Amer S. Al-Hinai & Mohammed H. Albadi & Abdullah H. Al-Badi, 2021. "Experimental Study on the Effect of Dust Deposition on a Car Park Photovoltaic System with Different Cleaning Cycles," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    8. Erdenedavaa, Purevdalai & Akisawa, Atsushi & Adiyabat, Amarbayar & Otgonjanchiv, Erdenesuvd, 2019. "Observation and modeling of dust deposition on glass tube of evacuated solar thermal collectors in Mongolia," Renewable Energy, Elsevier, vol. 130(C), pages 613-621.
    9. Tanesab, Julius & Parlevliet, David & Whale, Jonathan & Urmee, Tania, 2018. "Energy and economic losses caused by dust on residential photovoltaic (PV) systems deployed in different climate areas," Renewable Energy, Elsevier, vol. 120(C), pages 401-412.
    10. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Optimizing wind barrier and photovoltaic array configuration in soiling mitigation," Renewable Energy, Elsevier, vol. 163(C), pages 225-236.
    11. Bouaddi, S. & Ihlal, A. & Fernández-García, A., 2017. "Comparative analysis of soiling of CSP mirror materials in arid zones," Renewable Energy, Elsevier, vol. 101(C), pages 437-449.
    12. Umar, Shayan & Waqas, Adeel & Tanveer, Waqas & Shahzad, Nadia & Janjua, Abdul Kashif & Dehghan, Maziar & Qureshi, Muhammad Salik & Shakir, Sehar, 2023. "A building integrated solar PV surface-cleaning setup to optimize the electricity output of PV modules in a polluted atmosphere," Renewable Energy, Elsevier, vol. 216(C).
    13. Alami Merrouni, Ahmed & Conceição, Ricardo & Mouaky, Ammar & Silva, Hugo Gonçalves & Ghennioui, Abdellatif, 2020. "CSP performance and yield analysis including soiling measurements for Morocco and Portugal," Renewable Energy, Elsevier, vol. 162(C), pages 1777-1792.
    14. Sánchez-Barroso, Gonzalo & González-Domínguez, Jaime & García-Sanz-Calcedo, Justo & Sanz, Joaquín García, 2021. "Markov chains estimation of the optimal periodicity for cleaning photovoltaic panels installed in the dehesa," Renewable Energy, Elsevier, vol. 179(C), pages 537-549.
    15. Dahlioui, Dounia & El Hamdani, Fayrouz & Djdiaa, Abdelali & Martínez López, Teodoro & Bouzekri, Hicham, 2023. "Assessment of dry and wet cleaning of aluminum mirrors toward water consumption reduction," Renewable Energy, Elsevier, vol. 205(C), pages 248-255.
    16. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    17. Isaacs, Stewart & Kalashnikova, Olga & Garay, Michael J. & van Donkelaar, Aaron & Hammer, Melanie S. & Lee, Huikyo & Wood, Danielle, 2023. "Dust soiling effects on decentralized solar in West Africa," Applied Energy, Elsevier, vol. 340(C).
    18. Ghosh, Santosh & Yadav, Vinod Kumar & Mukherjee, Vivekananda, 2018. "Evaluation of cumulative impact of partial shading and aerosols on different PV array topologies through combined Shannon's entropy and DEA," Energy, Elsevier, vol. 144(C), pages 765-775.
    19. Pankaj Borah & Leonardo Micheli & Nabin Sarmah, 2023. "Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    20. Alshawaf, Mohammad & Poudineh, Rahmatallah & Alhajeri, Nawaf S., 2020. "Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:263-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.