IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v142y2019icp604-611.html
   My bibliography  Save this article

Multiwall carbon nanotubes tailored porous carbon fiber paper-based gas diffusion layer performance in polymer electrolyte membrane fuel cell

Author

Listed:
  • Kaushal, Shweta
  • Sahu, A.K.
  • Rani, Monika
  • Dhakate, S.R.

Abstract

In the present investigation, porous carbon fiber paper as a gas diffusion layer (GDL) of polymer electrolyte membrane fuel cell was modified by nano-structuring. It was modified by incorporating multiwall carbon nanotubes (MWCNTs) in chopped carbon fiber preform by two approaches; first by incorporating in the matrix phase and second by the in-situ growth of MWCNTs on the carbon fiber preform by chemical vapor deposition technique, followed by impregnation of phenolic resin and processed to carbonization at 1000 and 1800 °C.The effect of MWCNTs incorporation was ascertained by characterizing carbon fiber paper by various techniques. It is found that incorporation of MWCNTs reveals an increase in electrical conductivity from 66 S/cm to 175 S/cm and flexural modulus from 5 GPa to 20 GPa. The extent of increase in electrical conductivity was greater in MWCNTs mixed with phenolic resin as compared to MWCNTs grown over the carbon fiber preform. There is a significant improvement in power density from 361 to 594 mW/cm2 of MWCNTs grown based GDL. The BET contact angle increases the hydrophobicity of GDL, reduced the blockage of gas diffusion path. Also, higher value of electrical conductivity, surface area and optimal pore sizes results in the enhancement of I-V performance.

Suggested Citation

  • Kaushal, Shweta & Sahu, A.K. & Rani, Monika & Dhakate, S.R., 2019. "Multiwall carbon nanotubes tailored porous carbon fiber paper-based gas diffusion layer performance in polymer electrolyte membrane fuel cell," Renewable Energy, Elsevier, vol. 142(C), pages 604-611.
  • Handle: RePEc:eee:renene:v:142:y:2019:i:c:p:604-611
    DOI: 10.1016/j.renene.2019.04.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119305804
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hung, Chih-Jung & Liu, Ching-Han & Wang, Chien-Hsun & Chen, Wei-Hung & Shen, Chin-Wei & Liang, Heng-Chia & Ko, Tse-Hao, 2015. "Effect of conductive carbon material content and structure in carbon fiber paper made from carbon felt on the performance of a proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 78(C), pages 364-373.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, F.C. & Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L & Lyth, S.M. & Pourkashanian, M., 2022. "Alternative architectures and materials for PEMFC gas diffusion layers: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Ercelik, Mustafa & Ismail, Mohammed S. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2023. "Efficient X-ray CT-based numerical computations of structural and mass transport properties of nickel foam-based GDLs for PEFCs," Energy, Elsevier, vol. 262(PB).
    3. Han, Yuan & Zhang, Houcheng, 2022. "Potentiality of elastocaloric cooling system for high-temperature proton exchange membrane fuel cell waste heat harvesting," Renewable Energy, Elsevier, vol. 200(C), pages 1166-1179.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shengnan & Li, Yunhua & Li, Yun-Ze & Peng, Xing & Mao, Yufeng, 2018. "Exergy based parametric analysis of a cooling and power co-generation system for the life support system of extravehicular spacesuits," Renewable Energy, Elsevier, vol. 115(C), pages 1209-1219.
    2. Lee, F.C. & Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L & Lyth, S.M. & Pourkashanian, M., 2022. "Alternative architectures and materials for PEMFC gas diffusion layers: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:142:y:2019:i:c:p:604-611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.