IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp710-726.html
   My bibliography  Save this article

Complex but negligible: Non-linearity of the inertial coupling between the platform and blades of floating wind turbines

Author

Listed:
  • Lupton, Richard C.
  • Langley, Robin S.

Abstract

Approximate linearised models can be important for preliminary design of floating wind turbines, but their value depends on how well they approximate the real-world non-linear behaviour. This paper focuses on the non-linear inertial coupling between motion of the floating platform and the blade dynamics, using a simplified model to demonstrate how the inertial coupling works, and systematically studying the linearity of the dynamic blade response to different directions, amplitudes and frequencies of motion. Simplified equations of motion are derived and approximately solved analytically, showing that the blade response contains harmonics at a range of frequencies, some linear and some non-linear in the amplitude of the platform motion. Comparison to numerical simulations shows that the analytical results were qualitatively useful but inaccurate for large platform motions. Because of the multiple harmonics in the response, there are more combinations of rotor speeds and platform motions leading to large resonant blade responses and non-linear behaviour than might be expected. Overall, for realistically low rotor speeds and platform frequencies (below 20 rpm and 0.2 Hz), non-linear inertial loading due to platform motion should be negligible. The implications of this work for the use of linearised structural models and the relevance of scale model testing are discussed.

Suggested Citation

  • Lupton, Richard C. & Langley, Robin S., 2019. "Complex but negligible: Non-linearity of the inertial coupling between the platform and blades of floating wind turbines," Renewable Energy, Elsevier, vol. 134(C), pages 710-726.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:710-726
    DOI: 10.1016/j.renene.2018.11.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lupton, R.C. & Langley, R.S., 2017. "Scaling of slow-drift motion with platform size and its importance for floating wind turbines," Renewable Energy, Elsevier, vol. 101(C), pages 1013-1020.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lupton, Richard C. & Langley, Robin S., 2019. "Improved linearised models of wind turbine aerodynamics and control system dynamics using harmonic linearisation," Renewable Energy, Elsevier, vol. 135(C), pages 148-162.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Lupton, Richard C. & Langley, Robin S., 2019. "Improved linearised models of wind turbine aerodynamics and control system dynamics using harmonic linearisation," Renewable Energy, Elsevier, vol. 135(C), pages 148-162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:710-726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.