IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v131y2019icp25-36.html
   My bibliography  Save this article

Active control of wind turbines through varying blade tip sweep

Author

Listed:
  • Boulamatsis, Achilles M.
  • Barlas, Thanasis K.
  • Stapountzis, Herricos

Abstract

In this research work an introduction to the concept of an actively controlled horizontal axis wind turbine through varying blade tip sweep, is presented. The concept refers to variable tip swept rotor blades, that have the ability to pivot collectively aft, about an axis located at the blade tips. Quantities to be controlled are power production and blade loads. The investigation is carried out with a modified Blade Element Momentum (BEM) model that takes into account variable tip swept rotor blades and the modifications are based on results from a lifting line theory based model. The simulations refer to the 5 MW NREL reference wind turbine that incorporates a suitable controller and preliminary results show beneficial behavior in all of the investigated areas.

Suggested Citation

  • Boulamatsis, Achilles M. & Barlas, Thanasis K. & Stapountzis, Herricos, 2019. "Active control of wind turbines through varying blade tip sweep," Renewable Energy, Elsevier, vol. 131(C), pages 25-36.
  • Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:25-36
    DOI: 10.1016/j.renene.2018.07.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811830819X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
    2. Azael Duran Castillo & Juan C. Jauregui-Correa & Francisco Herbert & Krystel K. Castillo-Villar & Jesus Alejandro Franco & Quetzalcoatl Hernandez-Escobedo & Alberto-Jesus Perea-Moreno & Alfredo Alcayd, 2021. "The Effect of a Flexible Blade for Load Alleviation in Wind Turbines," Energies, MDPI, vol. 14(16), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:131:y:2019:i:c:p:25-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.