IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v12y1997i4p387-400.html
   My bibliography  Save this article

Output control by hill-climbing method for a small scale wind power generating system

Author

Listed:
  • Tanaka, T.
  • Toumiya, T.
  • Suzuki, T.

Abstract

In this paper, a control method with which it is possible to extract wind energy effectively, even when the system characteristic is unknown, is suggested. With this control method, it is possible to follow the quasi-maximum output only by measurements of the load terminal voltage and current, which are relatively simple to measure with high accuracy. The hill-climbing method, among adaptive control methods, was adopted. For the purpose of confirming the effectiveness of this method, investigation by simulation using a model of a small-scale windmill generating system with a resistive load was conducted.

Suggested Citation

  • Tanaka, T. & Toumiya, T. & Suzuki, T., 1997. "Output control by hill-climbing method for a small scale wind power generating system," Renewable Energy, Elsevier, vol. 12(4), pages 387-400.
  • Handle: RePEc:eee:renene:v:12:y:1997:i:4:p:387-400
    DOI: 10.1016/S0960-1481(97)00055-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148197000554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(97)00055-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming-Fa Tsai & Chung-Shi Tseng & Bor-Yuh Lin, 2020. "Phase Voltage-Oriented Control of a PMSG Wind Generator for Unity Power Factor Correction," Energies, MDPI, vol. 13(21), pages 1-22, October.
    2. Jurado, Francisco & Saenz, José R., 2003. "An adaptive control scheme for biomass-based diesel–wind system," Renewable Energy, Elsevier, vol. 28(1), pages 45-57.
    3. Kalantar, M. & Mousavi G., S.M., 2010. "Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage," Applied Energy, Elsevier, vol. 87(10), pages 3051-3064, October.
    4. Lin, Whei-Min & Hong, Chih-Ming, 2010. "Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system," Energy, Elsevier, vol. 35(6), pages 2440-2447.
    5. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    6. Narayana, M. & Putrus, G.A. & Jovanovic, M. & Leung, P.S. & McDonald, S., 2012. "Generic maximum power point tracking controller for small-scale wind turbines," Renewable Energy, Elsevier, vol. 44(C), pages 72-79.
    7. Maheshwari, Zeel & Kengne, Kamgang & Bhat, Omkar, 2023. "A comprehensive review on wind turbine emulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    8. Elnaggar, M. & Abdel Fattah, H.A. & Elshafei, A.L., 2014. "Maximum power tracking in WECS (Wind energy conversion systems) via numerical and stochastic approaches," Energy, Elsevier, vol. 74(C), pages 651-661.
    9. Arifujjaman, Md. & Iqbal, M. Tariq & Quaicoe, John E., 2008. "Energy capture by a small wind-energy conversion system," Applied Energy, Elsevier, vol. 85(1), pages 41-51, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:12:y:1997:i:4:p:387-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.