IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v126y2018icp437-444.html
   My bibliography  Save this article

Ionic liquid (IL) capped MnO2 nanoparticles as an electrode material and IL as electrolyte for supercapacitor application

Author

Listed:
  • Bharate, B.G.
  • Hande, Pankaj E.
  • Samui, A.B.
  • Kulkarni, P.S.

Abstract

In this work, an ionic liquid (IL) based electrode material was synthesized for the supercapacitor application. Initially, manganese dioxide (MnO2) nanoparticles have been prepared by a sol-gel method using IL, Aliquat HTA-1 as a capping agent. The effect of IL on the morphology of MnO2 nanoparticles has been investigated by using scanning and transmission electron microscopy. The morphology reveals formation of the nanorods in presence of IL and spherical nanoparticles in absence of IL. The X-ray diffraction measurements disclose a tetragonal crystal structure pattern of α-MnO2 with a crystallite size of about 20 nm. Optical properties of MnO2 have been studied by UV–Vis and emission spectroscopy. The emission spectra of MnO2 in presence of IL exhibits emission band which shows a red shift by 30 nm. The supercapacitor study has been carried out using cyclic voltammetry, and charge-discharge with MnO2 as an electrode material and 5% IL as supporting electrolyte. As evidenced by the electrochemical measurements, the MnO2 with IL generates a substantial pseudocapacitance reaching a maximum value of up to 453 Fg−1. Moreover, the supercapacitor is assembled with IL capped MnO2 as a positive and a negative electrode which resulted in high specific capacitance and better rate capability.

Suggested Citation

  • Bharate, B.G. & Hande, Pankaj E. & Samui, A.B. & Kulkarni, P.S., 2018. "Ionic liquid (IL) capped MnO2 nanoparticles as an electrode material and IL as electrolyte for supercapacitor application," Renewable Energy, Elsevier, vol. 126(C), pages 437-444.
  • Handle: RePEc:eee:renene:v:126:y:2018:i:c:p:437-444
    DOI: 10.1016/j.renene.2018.03.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118303720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.03.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faraji, Soheila & Ani, Farid Nasir, 2015. "The development supercapacitor from activated carbon by electroless plating—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 823-834.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gou, Guangjun & Huang, Fei & Jiang, Man & Li, Jinyang & Zhou, Zuowan, 2020. "Hierarchical porous carbon electrode materials for supercapacitor developed from wheat straw cellulosic foam," Renewable Energy, Elsevier, vol. 149(C), pages 208-216.
    2. Salimi, Pejman & Norouzi, Omid & Pourhoseini, S.E.M. & Bartocci, Pietro & Tavasoli, Ahmad & Di Maria, Francesco & Pirbazari, S.M. & Bidini, Gianni & Fantozzi, Francesco, 2019. "Magnetic biochar obtained through catalytic pyrolysis of macroalgae: A promising anode material for Li-ion batteries," Renewable Energy, Elsevier, vol. 140(C), pages 704-714.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Chunli & Li, Qiang & Wang, Kai, 2021. "State-of-charge estimation and remaining useful life prediction of supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    3. Reddi Khasim, Shaik & Dhanamjayulu, C., 2021. "Selection parameters and synthesis of multi-input converters for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Cerciello, Francesca & Coppola, Antonio & Lacovig, Paolo & Senneca, Osvalda & Salatino, Piero, 2021. "Characterization of surface-oxides on char under periodically changing oxidation/desorption conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Cerciello, Francesca & Senneca, Osvalda & Coppola, Antonio & Forgione, Annunziata & Lacovig, Paolo & Salatino, Piero, 2021. "The influence of temperature on the nature and stability of surface-oxides formed by oxidation of char," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).
    7. Mehta, Siddhi & Jha, Swarn & Liang, Hong, 2020. "Lignocellulose materials for supercapacitor and battery electrodes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:126:y:2018:i:c:p:437-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.