IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v118y2018icp947-954.html
   My bibliography  Save this article

Colloidal plasmonic structures for harvesting solar radiation

Author

Listed:
  • Rativa, Diego
  • Gómez-Malagón, Luis A.

Abstract

Direct Solar Absorption Collectors explore the thermo-optical properties of fluids to convert solar radiation into thermal energy. Colloids of metallic nanoparticles have shown a great potential to convert solar radiation into thermal energy efficiently, because of the matching between the absorption peak of the localized surface plasmon resonance and the solar radiation spectrum. Recently, multilayered metallic nano structures have been broadly studied for Thermo-optical applications due to the possibility to tune the plasmon resonance next to the near infrared region. In this work, using a full-wave field numerical model, we study the solar absorption of metallic nanofluids composed of Solid structures (Sphere, Cube, Tetrahedral, Octahedral), Silica-based structures (Shell and Multilayered) and its elliptical versions. Although a large part of the metallic material is replaced for SiO2 in the nanofluid composition of NanoShell (NS) and Multilayered (ML) structures, the values of solar radiation absorber coefficients are larger than the obtained with solid particles. Also, the quantity of metal is just 18% (NS) and 53% (ML) of the material necessary to fabricate colloids of solid particles. For the elliptical structures, the values of solar radiation absorber condition are larger than the obtained with spherical structures.

Suggested Citation

  • Rativa, Diego & Gómez-Malagón, Luis A., 2018. "Colloidal plasmonic structures for harvesting solar radiation," Renewable Energy, Elsevier, vol. 118(C), pages 947-954.
  • Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:947-954
    DOI: 10.1016/j.renene.2017.10.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811731090X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.10.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    2. Javadi, F.S. & Saidur, R. & Kamalisarvestani, M., 2013. "Investigating performance improvement of solar collectors by using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 232-245.
    3. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    4. Chen, Meijie & He, Yurong & Zhu, Jiaqi & Wen, Dongsheng, 2016. "Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors," Applied Energy, Elsevier, vol. 181(C), pages 65-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Chunlei & Zou, Yuan & Qin, Caiyan & Chen, Meijie & Li, Xiaoke & Zhang, Bin & Wu, Xiaohu, 2022. "Solar absorption characteristics of SiO2@Au core-shell composite nanorods for the direct absorption solar collector," Renewable Energy, Elsevier, vol. 189(C), pages 402-411.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    2. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    3. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    5. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    6. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    7. Oruc, Muhammed E. & Desai, Amit V. & Kenis, Paul J.A. & Nuzzo, Ralph G., 2016. "Comprehensive energy analysis of a photovoltaic thermal water electrolyzer," Applied Energy, Elsevier, vol. 164(C), pages 294-302.
    8. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Gorji, Tahereh B. & Ranjbar, A.A., 2017. "A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 10-32.
    10. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    11. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    12. Dugaria, Simone & Bortolato, Matteo & Del Col, Davide, 2018. "Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation," Renewable Energy, Elsevier, vol. 128(PB), pages 495-508.
    13. Morini, Mirko & Pinelli, Michele & Spina, Pier Ruggero & Venturini, Mauro, 2013. "Optimal allocation of thermal, electric and cooling loads among generation technologies in household applications," Applied Energy, Elsevier, vol. 112(C), pages 205-214.
    14. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    15. Shang, Zeguo & Hao, Yi & Xu, Chengyuan & Li, Xingcan, 2024. "Prediction of radiation characteristics of solar collectors with multiple geometrical configurations based on Monte Carlo considering absorption element," Energy, Elsevier, vol. 288(C).
    16. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    17. Francesco Calise & Rafal Damian Figaj & Laura Vanoli, 2017. "Experimental and Numerical Analyses of a Flat Plate Photovoltaic/Thermal Solar Collector," Energies, MDPI, vol. 10(4), pages 1-21, April.
    18. Pedro Orgeira-Crespo & Carlos Ulloa & José M. Núñez & José A. Pérez, 2020. "Development of a Transient Model of a Lightweight, Portable and Flexible Air-Based PV-T Module for UAV Shelter Hangars," Energies, MDPI, vol. 13(11), pages 1-15, June.
    19. Besagni, Giorgio & Croci, Lorenzo & Nesa, Riccardo & Molinaroli, Luca, 2019. "Field study of a novel solar-assisted dual-source multifunctional heat pump," Renewable Energy, Elsevier, vol. 132(C), pages 1185-1215.
    20. Tagliafico, Luca A. & Scarpa, Federico & De Rosa, Mattia, 2014. "Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 526-537.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:118:y:2018:i:c:p:947-954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.