IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v114y2017ipbp817-829.html
   My bibliography  Save this article

REEFS: An artificial reef for wave energy harnessing and shore protection – A new concept towards multipurpose sustainable solutions

Author

Listed:
  • Lopes de Almeida, J.P.P.G.

Abstract

This paper presents a new patent pending Wave Energy Converter (WEC) named REEFS (Renewable Electric Energy From Sea). REEFS can harness both, potential energy as well as kinetic energy, of sea waves. Its structure consists of a nearshore fixed submerged caisson placed on the seabed at low depth. REEFS can contribute to shore protection because it originates storm waves breaking like natural reefs do. Due to its stay vanes and variable porosity enveloping surface the REEFS WEC creates an inner sea water flow that drives a low head turbine located inside the device. In this paper a detailed description of the REEFS concept comprising its most relevant characteristics and its theoretical functioning principles is presented. The 1.5:100 small scale laboratory functional proof of concept is described and the corresponding results that confirmed the theoretical expectations are reported. Based on the experimental results, conclusions about the potential of the REEFS wave energy harnessing concept are presented.

Suggested Citation

  • Lopes de Almeida, J.P.P.G., 2017. "REEFS: An artificial reef for wave energy harnessing and shore protection – A new concept towards multipurpose sustainable solutions," Renewable Energy, Elsevier, vol. 114(PB), pages 817-829.
  • Handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:817-829
    DOI: 10.1016/j.renene.2017.07.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palha, Artur & Mendes, Lourenço & Fortes, Conceição Juana & Brito-Melo, Ana & Sarmento, António, 2010. "The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices," Renewable Energy, Elsevier, vol. 35(1), pages 62-77.
    2. de Almeida, Aníbal T. & Inverno, Carlos & Lopes de Almeida, J. & Alfeu Sá Marques, J. & Santos, Bruno, 2011. "Small-hydropower integration in a multi-purpose dam-bridge for sustainable urban mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5092-5103.
    3. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2013. "Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore," Energies, MDPI, vol. 6(3), pages 1-21, March.
    4. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    5. Rusu, Liliana & Onea, Florin, 2015. "Assessment of the performances of various wave energy converters along the European continental coasts," Energy, Elsevier, vol. 82(C), pages 889-904.
    6. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    2. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    3. Stefania Naty & Antonino Viviano & Enrico Foti, 2016. "Wave Energy Exploitation System Integrated in the Coastal Structure of a Mediterranean Port," Sustainability, MDPI, vol. 8(12), pages 1-19, December.
    4. Lavidas, George, 2020. "Selection index for Wave Energy Deployments (SIWED): A near-deterministic index for wave energy converters," Energy, Elsevier, vol. 196(C).
    5. Shi, Xueli & Liang, Bingchen & Du, Shengtao & Shao, Zhuxiao & Li, Shaowu, 2022. "Wave energy assessment in the China East Adjacent Seas based on a 25-year wave-current interaction numerical simulation," Renewable Energy, Elsevier, vol. 199(C), pages 1381-1407.
    6. Guillou, Nicolas & Chapalain, Georges, 2018. "Annual and seasonal variabilities in the performances of wave energy converters," Energy, Elsevier, vol. 165(PB), pages 812-823.
    7. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    8. Nicolas Guillou & George Lavidas & Bahareh Kamranzad, 2023. "Wave Energy in Brittany (France)—Resource Assessment and WEC Performances," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    9. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    10. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    11. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    12. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    13. Delpey, Matthias & Lastiri, Ximun & Abadie, Stéphane & Roeber, Volker & Maron, Philippe & Liria, Pedro & Mader, Julien, 2021. "Characterization of the wave resource variability in the French Basque coastal area based on a high-resolution hindcast," Renewable Energy, Elsevier, vol. 178(C), pages 79-95.
    14. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    15. Majidi, Ajab Gul & Bingölbali, Bilal & Akpınar, Adem & Rusu, Eugen, 2021. "Wave power performance of wave energy converters at high-energy areas of a semi-enclosed sea," Energy, Elsevier, vol. 220(C).
    16. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    17. Lavidas, George & Venugopal, Vengatesan, 2017. "A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea," Renewable Energy, Elsevier, vol. 103(C), pages 401-417.
    18. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    19. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    20. Liliana Rusu, 2015. "Assessment of the Wave Energy in the Black Sea Based on a 15-Year Hindcast with Data Assimilation," Energies, MDPI, vol. 8(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:817-829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.