IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp1150-1159.html
   My bibliography  Save this article

Experimental evaluation of photovoltaic DC refrigerator under different thermostat settings

Author

Listed:
  • Daffallah, K.O.
  • Benghanem, M.
  • Alamri, S.N.
  • Joraid, A.A.
  • Al-Mashraqi, A.A.

Abstract

In the present study, an experimental evaluation of photovoltaic DC refrigerator with and without loading is carried out under different conditions. The experimental setup consists of photovoltaic (PV) panel, 12 V battery, charge controller and 158 L DC refrigerator. The refrigerator run with a 12 V DC compressor and incorporated with an AC/DC converter as a backup source. The temperature inside the refrigerator is adjusted through a thermostat. The effects of the variations of thermostat setting on the performance of the refrigerator were investigated. The daily ampere hour (Ah) generated from the photovoltaic panel is compared with daily ampere hour (Ah) consumed by the refrigerator for different configurations. Experimental results show that the refrigerator consumed less ampere hour (Ah) when the thermostat at lower position. However, it was found that the maximum consumption is recorded when the thermostat at higher position. More detailed test were conducted for the operation of the refrigerator without photovoltaic panel (battery only) and with AC/DC converter. The power consumption of the refrigerator with different loadings were also recorded and compared with power consumption without loading condition. It was observed that the thermostat setting position has a great effect on the energy consumption of the refrigerator.

Suggested Citation

  • Daffallah, K.O. & Benghanem, M. & Alamri, S.N. & Joraid, A.A. & Al-Mashraqi, A.A., 2017. "Experimental evaluation of photovoltaic DC refrigerator under different thermostat settings," Renewable Energy, Elsevier, vol. 113(C), pages 1150-1159.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1150-1159
    DOI: 10.1016/j.renene.2017.05.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117304615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.05.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cherif, Adnene & Dhouib, Ahmed, 2002. "Dynamic modelling and simulation of a photovoltaic refrigeration plant," Renewable Energy, Elsevier, vol. 26(1), pages 143-153.
    2. Toure, Siaka & Fassinou, Wanignon Ferdinand, 1999. "Technical note Cold storage and autonomy in a three compartments photovoltaic solar refrigerator: experimental and thermodynamic study," Renewable Energy, Elsevier, vol. 17(4), pages 587-602.
    3. El Tom, O.M.M. & Omer, S.A. & Taha, A.Z. & Sayigh, A.A.M., 1991. "Performance of a photovoltaic solar refrigerator in tropical climate conditions," Renewable Energy, Elsevier, vol. 1(2), pages 199-205.
    4. Salah El-Din, M.M, 2000. "On the optimization of solar-driven refrigerators," Renewable Energy, Elsevier, vol. 20(1), pages 87-93.
    5. Derrick, A., 1994. "Solar photovoltaics for development: Progress and prospects," Renewable Energy, Elsevier, vol. 5(1), pages 229-236.
    6. Langevine, LP, 1997. "A diagnostic study of photovoltaic systems at rural health centres in Guyana," Renewable Energy, Elsevier, vol. 10(2), pages 153-156.
    7. Enibe, S.O., 1997. "Solar refrigeration for rural applications," Renewable Energy, Elsevier, vol. 12(2), pages 157-167.
    8. Papadopoulos, A. M. & Oxizidis, S. & Kyriakis, N., 2003. "Perspectives of solar cooling in view of the developments in the air-conditioning sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 419-438, October.
    9. Kaplanis, Socrates & Papanastasiou, Nikolaos, 2006. "The study and performance of a modified conventional refrigerator to serve as a PV powered one," Renewable Energy, Elsevier, vol. 31(6), pages 771-780.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alaaeddin, M.H. & Sapuan, S.M. & Zuhri, M.Y.M. & Zainudin, E.S. & AL- Oqla, Faris M., 2019. "Photovoltaic applications: Status and manufacturing prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 318-332.
    2. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2020. "Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications," Applied Energy, Elsevier, vol. 273(C).
    3. Eid, Eldesouki I. & Khalaf-Allah, Reda A. & Soliman, Ahmed M. & Easa, Ammar S., 2019. "Performance of a beta Stirling refrigerator with tubular evaporator and condenser having inserted twisted tapes and driven by a solar energy heat engine," Renewable Energy, Elsevier, vol. 135(C), pages 1314-1326.
    4. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    5. Yu, Xiaohui & Jiang, Sensen & Zhang, Songyi, 2023. "Energy, exergy, economic and environmental assessment of solar photovoltaic direct-drive refrigeration system for electronic device cooling," Renewable Energy, Elsevier, vol. 219(P2).
    6. Wang, Yingli & Duan, Jialong & Zhao, Yuanyuan & He, Benlin & Tang, Qunwei, 2018. "Harvest rain energy by polyaniline-graphene composite films," Renewable Energy, Elsevier, vol. 125(C), pages 995-1002.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Bin-Juine & Hou, Tung-Fu & Hsu, Po-Chien & Lin, Tse-Han & Chen, Yan-Tze & Chen, Chi-Wen & Li, Kang & Lee, K.Y., 2016. "Design of direct solar PV driven air conditioner," Renewable Energy, Elsevier, vol. 88(C), pages 95-101.
    2. Modi, Anish & Chaudhuri, Anirban & Vijay, Bhavesh & Mathur, Jyotirmay, 2009. "Performance analysis of a solar photovoltaic operated domestic refrigerator," Applied Energy, Elsevier, vol. 86(12), pages 2583-2591, December.
    3. Afshar, O. & Saidur, R. & Hasanuzzaman, M. & Jameel, M., 2012. "A review of thermodynamics and heat transfer in solar refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5639-5648.
    4. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    5. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    6. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    7. Gao, Yuhe & Ji, Jie & Han, Kedong & Zhang, Feng, 2021. "Experimental and numerical study of a PV/T direct-driven refrigeration/heating system," Energy, Elsevier, vol. 230(C).
    8. N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
    9. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    10. Meriem Zlaoui & Mohamed Zied Dhraief & Muhi El-Dine Hilali & Boubaker Dhehibi & Mondher Ben Salem & Oussama Jebali & Mourad Rekik, 2023. "Can Small-Scale Dairy Farm Profitability Increase with the Use of Solar Energy Technology? An Experimental Study in Central Tunisia," Energies, MDPI, vol. 16(13), pages 1-21, June.
    11. Ali, Akhter & Bahadur Rahut, Dil & Behera, Bhagirath, 2016. "Factors influencing farmers׳ adoption of energy-based water pumps and impacts on crop productivity and household income in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 48-57.
    12. Solmus, Ismail & YamalI, Cemil & Kaftanoglu, Bilgin & Baker, Derek & Çaglar, Ahmet, 2010. "Adsorption properties of a natural zeolite-water pair for use in adsorption cooling cycles," Applied Energy, Elsevier, vol. 87(6), pages 2062-2067, June.
    13. Tiwari, G.N. & Mishra, R.K. & Solanki, S.C., 2011. "Photovoltaic modules and their applications: A review on thermal modelling," Applied Energy, Elsevier, vol. 88(7), pages 2287-2304, July.
    14. Rosiek, S. & Batlles, F.J., 2009. "Integration of the solar thermal energy in the construction: Analysis of the solar-assisted air-conditioning system installed in CIESOL building," Renewable Energy, Elsevier, vol. 34(6), pages 1423-1431.
    15. Li, Sihui & Peng, Jinqing & Zou, Bin & Li, Bojia & Lu, Chujie & Cao, Jingyu & Luo, Yimo & Ma, Tao, 2021. "Zero energy potential of photovoltaic direct-driven air conditioners with considering the load flexibility of air conditioners," Applied Energy, Elsevier, vol. 304(C).
    16. Baniyounes, Ali M. & Rasul, M.G. & Khan, M.M.K., 2013. "Assessment of solar assisted air conditioning in Central Queensland's subtropical climate, Australia," Renewable Energy, Elsevier, vol. 50(C), pages 334-341.
    17. Wu, J.Y. & Li, S., 2009. "Study on cyclic characteristics of silica gel–water adsorption cooling system driven by variable heat source," Energy, Elsevier, vol. 34(11), pages 1955-1962.
    18. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    19. Maxoulis, Christos N. & Kalogirou, Soteris A., 2008. "Cyprus energy policy: The road to the 2006 world renewable energy congress trophy," Renewable Energy, Elsevier, vol. 33(3), pages 355-365.
    20. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1150-1159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.