IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v101y2017icp886-893.html
   My bibliography  Save this article

Evaluating high volume blends of vegetable oil in micro-gas turbine engines

Author

Listed:
  • Hoxie, A.
  • Anderson, M.

Abstract

Vegetable oil was examined to determine if high volume blends with No. 2 ultra-low-sulfur diesel could be successfully utilized in micro gas turbine engines. Property data, and atomization and micro-gas turbine engine studies were examined for blends of up to 75% by volume soybean oil with No. 2 ultra-low-sulfur-diesel (ULSD). Kay's and Grunberg-Nissan mixing rules were found to predict specific gravity and viscosity, respectively, based on composition to a high level of accuracy. For Kay's mixing rule the AADs were below 1%, while AADs for the Grunberg-Nissan equation stayed under 4%. Atomization tests showed an increase in cone angle of 18° for a 30-degree nozzle with a mixture of 50% soybean oil/ULSD over that of pure soybean oil. The pour point for blends of V50 and V75 were found to meet the ASTM D2880-13b Fuel Oil Specifications for gas turbine engines. For a V50 blend the spray angle was increased by 50% over that of pure SBO. The micro-gas turbine engine performed well for fuel blends up to 75% vegetable oil, with comparable engine efficiencies to that of ULSD. Engine efficiency and thrust increase with increasing RPM. The studies indicate that high volume blends of straight vegetable oil with ULSD are suitable in micro-gas turbine engines.

Suggested Citation

  • Hoxie, A. & Anderson, M., 2017. "Evaluating high volume blends of vegetable oil in micro-gas turbine engines," Renewable Energy, Elsevier, vol. 101(C), pages 886-893.
  • Handle: RePEc:eee:renene:v:101:y:2017:i:c:p:886-893
    DOI: 10.1016/j.renene.2016.09.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116308448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.09.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prussi, Matteo & Chiaramonti, David & Recchia, Lucia & Martelli, Francesco & Guidotti, Fabio & Pari, Luigi, 2013. "Alternative feedstock for the biodiesel and energy production: The OVEST project," Energy, Elsevier, vol. 58(C), pages 2-8.
    2. Rehman, A. & Phalke, Deepak R. & Pandey, Rajesh, 2011. "Alternative fuel for gas turbine: Esterified jatropha oil–diesel blend," Renewable Energy, Elsevier, vol. 36(10), pages 2635-2640.
    3. Nascimento, Marco A.R. & Lora, Electo S. & Corrêa, Paulo S.P. & Andrade, Rubenildo V. & Rendon, Manuel A. & Venturini, Osvaldo J. & Ramirez, Guido A.S., 2008. "Biodiesel fuel in diesel micro-turbine engines: Modelling and experimental evaluation," Energy, Elsevier, vol. 33(2), pages 233-240.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ade Suhara & Karyadi & Safarudin Gazali Herawan & Andy Tirta & Muhammad Idris & Muhammad Faizullizam Roslan & Nicky Rahmana Putra & April Lia Hananto & Ibham Veza, 2024. "Biodiesel Sustainability: Review of Progress and Challenges of Biodiesel as Sustainable Biofuel," Clean Technol., MDPI, vol. 6(3), pages 1-21, July.
    2. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    3. Balli, Ozgur & Caliskan, Nesrin & Caliskan, Hakan, 2023. "Aviation, energy, exergy, sustainability, exergoenvironmental and thermoeconomic analyses of a turbojet engine fueled with jet fuel and biofuel used on a pilot trainer aircraft," Energy, Elsevier, vol. 263(PD).
    4. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Ibegbu, Anayo Jerome & Tomomewo, Olusegun Stanley, 2023. "Evaluation of engine characteristics of a micro-gas turbine powered with JETA1 fuel mixed with Afzelia biodiesel and dimethyl ether (DME)," Renewable Energy, Elsevier, vol. 216(C).
    5. Peng, Qingguo & Shi, Zhiwei & Xie, Bo & Huang, Zhixin & Tang, Shihao & Li, Xianhua & Huang, Haisong & E, Jiaqiang, 2023. "Optimisation of a micro-thermophotovoltaic with porous media inserted burner for electrical power improvement," Renewable Energy, Elsevier, vol. 215(C).
    6. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    7. Gabriel Talero & Camilo Bayona-Roa & Giovanny Muñoz & Miguel Galindo & Vladimir Silva & Juan Pava & Mauricio Lopez, 2019. "Experimental Methodology and Facility for the J69-Engine Performance and Emissions Evaluation Using Jet A1 and Biodiesel Blends," Energies, MDPI, vol. 12(23), pages 1-10, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chong, Cheng Tung & Hochgreb, Simone, 2017. "Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions," Applied Energy, Elsevier, vol. 185(P2), pages 1383-1392.
    2. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    3. Moya, M. & Bruno, J.C. & Eguia, P. & Torres, E. & Zamora, I. & Coronas, A., 2011. "Performance analysis of a trigeneration system based on a micro gas turbine and an air-cooled, indirect fired, ammonia–water absorption chiller," Applied Energy, Elsevier, vol. 88(12), pages 4424-4440.
    4. Erika Carnevale & Giovanni Molari & Matteo Vittuari, 2017. "Used Cooking Oils in the Biogas Chain: A Technical and Economic Assessment," Energies, MDPI, vol. 10(2), pages 1-13, February.
    5. Kurji, H. & Valera-Medina, A. & Runyon, J. & Giles, A. & Pugh, D. & Marsh, R. & Cerone, N. & Zimbardi, F. & Valerio, V., 2016. "Combustion characteristics of biodiesel saturated with pyrolysis oil for power generation in gas turbines," Renewable Energy, Elsevier, vol. 99(C), pages 443-451.
    6. Chiaramonti, David & Rizzo, Andrea Maria & Spadi, Adriano & Prussi, Matteo & Riccio, Giovanni & Martelli, Francesco, 2013. "Exhaust emissions from liquid fuel micro gas turbine fed with diesel oil, biodiesel and vegetable oil," Applied Energy, Elsevier, vol. 101(C), pages 349-356.
    7. Deb, Madhujit & Paul, Abhishek & Debroy, Durbadal & Sastry, G.R.K. & Panua, Raj Sekhar & Bose, P.K., 2015. "An experimental investigation of performance-emission trade off characteristics of a CI engine using hydrogen as dual fuel," Energy, Elsevier, vol. 85(C), pages 569-585.
    8. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    9. Lora, E.S. & Andrade, R.V., 2009. "Biomass as energy source in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 777-788, May.
    10. Marcus Evandro Teixeira Souza Junior & Luiz Carlos Gomes Freitas, 2022. "Power Electronics for Modern Sustainable Power Systems: Distributed Generation, Microgrids and Smart Grids—A Review," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    11. Hashimoto, Nozomu & Nishida, Hiroyuki & Kimoto, Masayoshi & Tainaka, Kazuki & Ikeda, Atsushi & Umemoto, Satoshi, 2018. "Effects of Jatropha oil blending with C-heavy oil on soot emissions and heat absorption balance characteristics for boiler combustion," Renewable Energy, Elsevier, vol. 126(C), pages 924-932.
    12. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    13. Kalam, M.A. & Ahamed, J.U. & Masjuki, H.H., 2012. "Land availability of Jatropha production in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3999-4007.
    14. Lohan, Shiv Kumar & Ram, T. & Mukesh, S. & Ali, M. & Arya, S., 2013. "Sustainability of biodiesel production as vehicular fuel in Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 251-259.
    15. Gabriel Talero & Camilo Bayona-Roa & Giovanny Muñoz & Miguel Galindo & Vladimir Silva & Juan Pava & Mauricio Lopez, 2019. "Experimental Methodology and Facility for the J69-Engine Performance and Emissions Evaluation Using Jet A1 and Biodiesel Blends," Energies, MDPI, vol. 12(23), pages 1-10, November.
    16. Pleşu, Valentin & Subirana Puigcasas, Joan & Benet Surroca, Guillem & Bonet, Jordi & Bonet Ruiz, Alexandra E. & Tuluc, Alexandru & Llorens, Joan, 2015. "Process intensification in biodiesel production with energy reduction by pinch analysis," Energy, Elsevier, vol. 79(C), pages 273-287.
    17. Serrano, Marta & Oliveros, Rubén & Sánchez, Marcos & Moraschini, Andrea & Martínez, Mercedes & Aracil, José, 2014. "Influence of blending vegetable oil methyl esters on biodiesel fuel properties: Oxidative stability and cold flow properties," Energy, Elsevier, vol. 65(C), pages 109-115.
    18. Pourhoseini, S.H. & Namvar-Mahboub, M. & Hosseini, Ebrahim & Alimoradi, Ashkan, 2021. "A comparative exploration of thermal, radiative and pollutant emission characteristics of oil burner flame using palm oil biodiesel-diesel blend fuel and diesel fuel," Energy, Elsevier, vol. 217(C).
    19. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    20. Chong, Cheng Tung & Chiong, Meng-Choung & Ng, Jo-Han & Lim, Mooktzeng & Tran, Manh-Vu & Valera-Medina, Agustin & Chong, William Woei Fong, 2019. "Oxygenated sunflower biodiesel: Spectroscopic and emissions quantification under reacting swirl spray conditions," Energy, Elsevier, vol. 178(C), pages 804-813.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:101:y:2017:i:c:p:886-893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.