An enhanced disk averaged CFD model for the simulation of horizontal axis tidal turbines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2016.08.007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mason-Jones, A. & O'Doherty, D.M. & Morris, C.E. & O'Doherty, T. & Byrne, C.B. & Prickett, P.W. & Grosvenor, R.I. & Owen, I. & Tedds, S. & Poole, R.J., 2012. "Non-dimensional scaling of tidal stream turbines," Energy, Elsevier, vol. 44(1), pages 820-829.
- Chapman, J.C. & Masters, I. & Togneri, M. & Orme, J.A.C., 2013. "The Buhl correction factor applied to high induction conditions for tidal stream turbines," Renewable Energy, Elsevier, vol. 60(C), pages 472-480.
- Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
- Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines," Renewable Energy, Elsevier, vol. 68(C), pages 876-892.
- Guo, Qiang & Zhou, Lingjiu & Wang, Zhengwei, 2015. "Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine," Renewable Energy, Elsevier, vol. 75(C), pages 640-648.
- Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine," Renewable Energy, Elsevier, vol. 66(C), pages 729-746.
- Griffiths, R.T. & Woollard, M.G., 1978. "Performance of the optimal wind turbine," Applied Energy, Elsevier, vol. 4(4), pages 261-272, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Elie, B. & Oger, G. & Guillerm, P.-E. & Alessandrini, B., 2017. "Simulation of horizontal axis tidal turbine wakes using a Weakly-Compressible Cartesian Hydrodynamic solver with local mesh refinement," Renewable Energy, Elsevier, vol. 108(C), pages 336-354.
- Chen, Yaling & Lin, Binliang & Sun, Jian & Guo, Jinxi & Wu, Wenlong, 2019. "Hydrodynamic effects of the ratio of rotor diameter to water depth: An experimental study," Renewable Energy, Elsevier, vol. 136(C), pages 331-341.
- Badoe, Charles E. & Edmunds, Matt & Williams, Alison J. & Nambiar, Anup & Sellar, Brian & Kiprakis, Aristides & Masters, Ian, 2022. "Robust validation of a generalised actuator disk CFD model for tidal turbine analysis using the FloWave ocean energy research facility," Renewable Energy, Elsevier, vol. 190(C), pages 232-250.
- Liu, Cheng & Hu, Changhong, 2019. "An actuator line - immersed boundary method for simulation of multiple tidal turbines," Renewable Energy, Elsevier, vol. 136(C), pages 473-490.
- Zangiabadi, E. & Masters, I. & Williams, Alison J. & Croft, T.N. & Malki, R. & Edmunds, M. & Mason-Jones, A. & Horsfall, I., 2017. "Computational prediction of pressure change in the vicinity of tidal stream turbines and the consequences for fish survival rate," Renewable Energy, Elsevier, vol. 101(C), pages 1141-1156.
- González-Gorbeña, Eduardo & Qassim, Raad Y. & Rosman, Paulo C.C., 2018. "Multi-dimensional optimisation of Tidal Energy Converters array layouts considering geometric, economic and environmental constraints," Renewable Energy, Elsevier, vol. 116(PA), pages 647-658.
- Li, Siyi & Zhang, Mingrui & Piggott, Matthew D., 2023. "End-to-end wind turbine wake modelling with deep graph representation learning," Applied Energy, Elsevier, vol. 339(C).
- Gauvin-Tremblay, Olivier & Dumas, Guy, 2022. "Hydrokinetic turbine array analysis and optimization integrating blockage effects and turbine-wake interactions," Renewable Energy, Elsevier, vol. 181(C), pages 851-869.
- Edmunds, Matt & Williams, Alison J. & Masters, Ian & Banerjee, Arindam & VanZwieten, James H., 2020. "A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines," Energy, Elsevier, vol. 194(C).
- Niebuhr, C.M. & Schmidt, S. & van Dijk, M. & Smith, L. & Neary, V.S., 2022. "A review of commercial numerical modelling approaches for axial hydrokinetic turbine wake analysis in channel flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Chen, Yaling & Wang, Dayu & Wang, Dangwei, 2024. "The flow field within a staggered hydrokinetic turbine array," Renewable Energy, Elsevier, vol. 224(C).
- Tian, Linlin & Song, Yilei & Wang, Zhenming & Zhao, Ning & Zhu, Chunling & Lu, Xiyun, 2024. "Predictive capability of an improved AD/RANS method for multiple wind turbines and wind farm wakes," Energy, Elsevier, vol. 297(C).
- Fredriksson, Sam T. & Broström, Göran & Bergqvist, Björn & Lennblad, Johan & Nilsson, Håkan, 2021. "Modelling Deep Green tidal power plant using large eddy simulations and the actuator line method," Renewable Energy, Elsevier, vol. 179(C), pages 1140-1155.
- Elie, B. & Oger, G. & Vittoz, L. & Le Touzé, D., 2022. "Simulation of two in-line wind turbines using an incompressible Finite Volume solver coupled with a Blade Element Model," Renewable Energy, Elsevier, vol. 187(C), pages 81-93.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Edmunds, Matt & Williams, Alison J. & Masters, Ian & Banerjee, Arindam & VanZwieten, James H., 2020. "A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines," Energy, Elsevier, vol. 194(C).
- Badoe, Charles E. & Edmunds, Matt & Williams, Alison J. & Nambiar, Anup & Sellar, Brian & Kiprakis, Aristides & Masters, Ian, 2022. "Robust validation of a generalised actuator disk CFD model for tidal turbine analysis using the FloWave ocean energy research facility," Renewable Energy, Elsevier, vol. 190(C), pages 232-250.
- Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
- Allmark, Matthew & Ellis, Robert & Lloyd, Catherine & Ordonez-Sanchez, Stephanie & Johannesen, Kate & Byrne, Carl & Johnstone, Cameron & O’Doherty, Tim & Mason-Jones, Allan, 2020. "The development, design and characterisation of a scale model Horizontal Axis Tidal Turbine for dynamic load quantification," Renewable Energy, Elsevier, vol. 156(C), pages 913-930.
- Ian Masters & Alison Williams & T. Nick Croft & Michael Togneri & Matt Edmunds & Enayatollah Zangiabadi & Iain Fairley & Harshinie Karunarathna, 2015. "A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis," Energies, MDPI, vol. 8(8), pages 1-21, July.
- Sutherland, Duncan & Ordonez-Sanchez, Stephanie & Belmont, Michael R. & Moon, Ian & Steynor, Jeffrey & Davey, Thomas & Bruce, Tom, 2018. "Experimental optimisation of power for large arrays of cross-flow tidal turbines," Renewable Energy, Elsevier, vol. 116(PA), pages 685-696.
- Niebuhr, C.M. & Schmidt, S. & van Dijk, M. & Smith, L. & Neary, V.S., 2022. "A review of commercial numerical modelling approaches for axial hydrokinetic turbine wake analysis in channel flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Liu, Cheng & Hu, Changhong, 2019. "An actuator line - immersed boundary method for simulation of multiple tidal turbines," Renewable Energy, Elsevier, vol. 136(C), pages 473-490.
- Zhang, Jisheng & Zhou, Yudi & Lin, Xiangfeng & Wang, Guohui & Guo, Yakun & Chen, Hao, 2022. "Experimental investigation on wake and thrust characteristics of a twin-rotor horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 195(C), pages 701-715.
- Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.
- Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
- Goss, Z.L. & Coles, D.S. & Kramer, S.C. & Piggott, M.D., 2021. "Efficient economic optimisation of large-scale tidal stream arrays," Applied Energy, Elsevier, vol. 295(C).
- Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
- Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
- Druault, Philippe & Gaurier, Benoît & Germain, Grégory, 2022. "Spatial integration effect on velocity spectrum: Towards an interpretation of the − 11/3 power law observed in the spectra of turbine outputs," Renewable Energy, Elsevier, vol. 181(C), pages 1062-1080.
- Di Felice, Fabio & Capone, Alessandro & Romano, Giovanni Paolo & Alves Pereira, Francisco, 2023. "Experimental study of the turbulent flow in the wake of a horizontal axis tidal current turbine," Renewable Energy, Elsevier, vol. 212(C), pages 17-34.
- Stuart Walker & Lorenzo Cappietti, 2017. "Experimental Studies of Turbulent Intensity around a Tidal Turbine Support Structure," Energies, MDPI, vol. 10(4), pages 1-21, April.
- Koh, W.X.M. & Ng, E.Y.K., 2017. "A CFD study on the performance of a tidal turbine under various flow and blockage conditions," Renewable Energy, Elsevier, vol. 107(C), pages 124-137.
- Craig Hill & Vincent S. Neary & Michele Guala & Fotis Sotiropoulos, 2020. "Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter," Energies, MDPI, vol. 13(19), pages 1-21, October.
- Gaurier, Benoît & Carlier, Clément & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2020. "Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance," Renewable Energy, Elsevier, vol. 148(C), pages 1150-1164.
More about this item
Keywords
Finite volume; Fluid-structure interaction; Hydrodynamics; Incompressible flow; Marine hydrodynamics; Turbulent flow;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:101:y:2017:i:c:p:67-81. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.