IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i3p166-172.html
   My bibliography  Save this article

Coupling CFAST fire modeling and SAPHIRE probabilistic assessment software for internal fire safety evaluation of a typical TRIGA research reactor

Author

Listed:
  • Safaei Arshi, Saiedeh
  • Nematollahi, Mohammadreza
  • Sepanloo, Kamran

Abstract

Due to the significant threat of internal fires for the safety operation of nuclear reactors, presumed fire scenarios with potential hazards for loss of typical research reactor safety functions are analyzed by coupling CFAST fire modeling and SAPHIRE probabilistic assessment software. The investigations show that fire hazards associated with electrical cable insulation, lubricating oils, diesel, electrical equipment and carbon filters may lead to unsafe situations called core damage states. Using system-specific event trees, the occurrence frequency of core damage states after the occurrence of each possible fire scenario in critical fire compartments is evaluated. Probability that the fire ignited in the given fire compartment will burn long enough to cause the extent of damage defined by each fire scenario is calculated by means of detection-suppression event tree. As a part of detection-suppression event trees quantification, and also for generating the necessary input data for evaluating the frequency of core damage states by SAPHIRE 7.0 software, CFAST fire modeling software is applied. The results provide a probabilistic measure of the quality of existing fire protection systems in order to maintain the reactor at a reasonable safety level.

Suggested Citation

  • Safaei Arshi, Saiedeh & Nematollahi, Mohammadreza & Sepanloo, Kamran, 2010. "Coupling CFAST fire modeling and SAPHIRE probabilistic assessment software for internal fire safety evaluation of a typical TRIGA research reactor," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 166-172.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:3:p:166-172
    DOI: 10.1016/j.ress.2009.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832009002269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2009.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dinesh, A. & Benson, C.M. & Holborn, P.G. & Sampath, S. & Xiong, Y., 2020. "Performance evaluation of nitrogen for fire safety application in aircraft," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    2. Kowal, Karol & Torabi, Mina, 2021. "Failure mode and reliability study for Electrical Facility of the High Temperature Engineering Test Reactor," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:3:p:166-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.