IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i5p927-931.html
   My bibliography  Save this article

Tracing the unreliability and recognizing the major unreliability contribution of network components

Author

Listed:
  • Xie, Kaigui
  • Billinton, Roy

Abstract

Weak part analysis of a system is a key element in a system reliability quantification process. It enables the weakest areas of a system to be recognized and assists in directing remedial measures for improving the system reliability. This paper presents a novel approach to identifying the weak parts using the unreliability tracing (UT) technique and introduces the proportional sharing principle (PSP). The model for tracing the unreliability of a complex network is presented based on reliability evaluation methods using minimal cut sets (MCSs) and the PSP. The system UT sharing factors (UTSFs) are derived to easily identify the major unreliability contributions (MUCs) in a system. The method is illustrated using three cases and the UT, UTSF and the reliability impact analysis of different components are discussed. The results show that the developed technique can be applied to complex networks for UT tracing and recognizing the MUC.

Suggested Citation

  • Xie, Kaigui & Billinton, Roy, 2009. "Tracing the unreliability and recognizing the major unreliability contribution of network components," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 927-931.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:5:p:927-931
    DOI: 10.1016/j.ress.2008.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008002585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Maosen & Shao, Changzheng & Hu, Bo & Xie, Kaigui & Zhou, Jiahao & Leng, Haimo & Zhang, Weixin, 2022. "Reliability tracing of the integrated energy system using the improved shapley value," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:5:p:927-931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.