IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i2p211-217.html
   My bibliography  Save this article

Advanced nuclear power plant regulation using risk-informed and performance-based methods

Author

Listed:
  • Modarres, Mohammad

Abstract

This paper proposes and discusses implications of a largely probabilistic regulatory framework using best-estimate, goal-driven, risk-informed, and performance-based methods. This framework relies on continuous probabilistic assessment of performance of a set of time-dependent, safety-critical systems, structures, components, and procedures that assure attainment of a broad set of overarching technology-neutral protective, mitigative, and preventive goals under all phases of plant operations. In this framework acceptable levels of performance are set through formal apportionment so that they are commensurate with the overarching goals. Regulatory acceptance would be the based on the confidence level with which the plant conforms to these goals and performance objectives. The proposed framework uses the traditional defense-in-depth design and operation regulatory philosophy when uncertainty in conforming to specific goals and objectives is high. Finally, the paper discusses the steps needed to develop a corresponding technology-neutral regulatory approach from the proposed framework.

Suggested Citation

  • Modarres, Mohammad, 2009. "Advanced nuclear power plant regulation using risk-informed and performance-based methods," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 211-217.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:211-217
    DOI: 10.1016/j.ress.2008.02.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008000677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.02.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pence, Justin & Abolhelm, Marzieh & Mohaghegh, Zahra & Reihani, Seyed & Ertem, Mehmet & Kee, Ernie, 2018. "Methodology to evaluate the monetary benefit of Probabilistic Risk Assessment by modeling the net value of Risk-Informed Applications at nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 171-182.
    2. Bodda, Saran Srikanth & Gupta, Abhinav & Dinh, Nam, 2020. "Enhancement of risk informed validation framework for external hazard scenario," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Reliability analysis & performance-based code calibration for slabs/walls of protective structures subject to air blast loading," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:211-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.