IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v91y2006i12p1502-1520.html
   My bibliography  Save this article

Multidisciplinary perspective on accident investigation

Author

Listed:
  • Basnyat, S.
  • Chozos, N.
  • Palanque, P.

Abstract

The increasing complexity of many computer-controlled application processes is placing increasing demands on the investigation of adverse events. At the same time, there is a growing realisation that accident investigators must consider a wider range of contributory and contextual factors that help to shape human behaviour in the causes of safety-related incidents. A range of techniques have been developed to address these issues. For example (as we show in this paper), task modelling techniques have been extended from human computer interaction and systems design to analyse the causes and consequences of operator ‘error’. Similarly, barrier analysis has been widely used to identify the way in which defences either protected or failed to protect a target system from potential hazards. Many barriers fail from common causes, including misconceptions that can be traced back to early stages in the development of a safety-critical system. For instance, unwarranted assumptions can be made about the impact of training on operator behaviour in emergency situations. Similarly, barrier analysis can also be used before a system has been designed to inform the system model and make it more tolerant to errors by incorporating human and technical barriers into the design. Task models often uncover deep-rooted problems, for instance, in workload allocation across many different aspects of an interactive control system. It can be difficult to use barrier and task analysis to trace these common causes that lie behind the failure of many different defences. In order to deal with this complex combination of contributory factors and systems, we promote the use of abstraction (via models) as a way of representing these components and their interrelations whether it is design, construction or investigation. We use, to formally model an abstraction of the system. Additionally, the system model (described using a dialect of high-level Petri-nets) allows to reason about the system and to check conformance with the other models (task model, safety case and barriers). This paper, therefore, shows how an analysis of safety case arguments can be used to support the application of barrier, task, error and system analysis during the investigation of a command and control failure. The intention, in this paper, is to show that if an accident involved the failure of multiple barriers, it is also possible to trace the common causes of those failures back to the assumptions and arguments that are embodied within a safety case. Many countries require that safety cases demonstrate a system is ‘acceptably safe’ before they grant regulatory approval. These documents and the associated analytical techniques, therefore, provide a rich source of information about why command and control failures occurred. We demonstrate our approach on a fatal mining accident case study.

Suggested Citation

  • Basnyat, S. & Chozos, N. & Palanque, P., 2006. "Multidisciplinary perspective on accident investigation," Reliability Engineering and System Safety, Elsevier, vol. 91(12), pages 1502-1520.
  • Handle: RePEc:eee:reensy:v:91:y:2006:i:12:p:1502-1520
    DOI: 10.1016/j.ress.2006.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832006000366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2006.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Palmer, C. & Chung, P.W.H., 2009. "An automated system for batch hazard and operability studies," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1095-1106.
    2. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2017. "Towards the assessment of potential impact of unmanned vessels on maritime transportation safety," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 155-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:91:y:2006:i:12:p:1502-1520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.