Author
Listed:
- Eischens, Reese
- Li, Tao
- Vogl, Gregory W.
- Cai, Yi
- Qu, Yongzhi
Abstract
Dynamic modeling of mechanical systems is important for the monitoring, diagnostics, control, and prediction of system behaviors. Modeling dynamic systems is one of the emerging tasks in scientific machine learning. Neural networks have been used to learn surrogate models for the underlying dynamics in the form of data-driven neural ordinary differential equations (NODEs). While most dynamical mechanical systems have some degree of nonlinearity within their dynamics, neural networks have shown potential in approximating dynamic systems with nonlinearities. However, despite the universal approximation capability of neural networks, this paper argues that by adding physics-aware nonlinear functions to the neural network model, the modeling accuracy of the neural network can be increased. In this paper, the construction of the nonlinear continuous-time state-space neural network (NLCSNN) is presented. The proposed approach can be used as a data-driven method for digital twin construction for monitoring, prediction, and reliability assessment. The NLCSNN improves upon the previously established continuous-time state-space neural network by increasing sensitivity to nonlinearity. The proposed NLCSNN is trained and validated using numerical and experimental examples, with results compared against those from several existing methodologies. Validation results show that the NLCSNN model can learn complex engineering dynamics without explicit knowledge of the underlying system. The modeling performance of the proposed data-driven approach outperforms a purely physics-based model, with results comparable to hybrid models. Additionally, the NLCSNN model achieved higher accuracy than the continuous-time state-space neural network (CSNN) model.
Suggested Citation
Eischens, Reese & Li, Tao & Vogl, Gregory W. & Cai, Yi & Qu, Yongzhi, 2025.
"State space neural network with nonlinear physics for mechanical system modeling,"
Reliability Engineering and System Safety, Elsevier, vol. 259(C).
Handle:
RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001498
DOI: 10.1016/j.ress.2025.110946
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001498. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.