IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v259y2025ics0951832025001292.html
   My bibliography  Save this article

An adaptive mixture prior in Bayesian convolutional autoencoder for early detecting anomalous degradation behaviors in lithium-ion batteries

Author

Listed:
  • Chae, Sun Geu
  • Bae, Suk Joo

Abstract

Accurate and timely detection of anomalies in lithium-ion batteries is crucial for ensuring their reliability and safety. Complex degradation patterns and limited availability of labeled data pose significant challenges in identifying abnormal behaviors in battery usage. This paper proposes an unsupervised adaptive mixture distribution-based Bayesian convolutional autoencoder (AMDBCAE) method for detecting anomalous degradation behaviors in lithium-ion batteries at earlier cycles of reliability test. As the prior for the model parameters, we propose a mixture of the Laplace and Student’s t distributions by taking uncertainties in the weights of the convolutional network and their heavy-tailed characteristics into account. Using a modified form of the Bayes by backprop algorithm, the parameter of mixture proportion is adaptively updated to capture diverse and complex degradation patterns in battery degradation data more efficiently. Extracted latent features are then processed through unsupervised clustering algorithms to identify abnormal degradation behaviors of lithium-ion batteries. The analyses of two real-world lithium-ion battery datasets demonstrate the efficiency and accuracy of the proposed unsupervised framework with limited number of testing data. The proposed method addresses the limitations of manual feature extraction and the need for extensive experimental knowledge by leveraging the adaptive BCAE model to automatically extract latent features as a virtual health indicator in sparse data environments.

Suggested Citation

  • Chae, Sun Geu & Bae, Suk Joo, 2025. "An adaptive mixture prior in Bayesian convolutional autoencoder for early detecting anomalous degradation behaviors in lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001292
    DOI: 10.1016/j.ress.2025.110926
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.