IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v259y2025ics0951832025001036.html
   My bibliography  Save this article

Resilience assessment of High-speed railway networks from the spatio-temporal perspective: A case study in Jiangsu Province, China

Author

Listed:
  • Xiao, Yunjiang
  • Li, Yang
  • Liu, Weidong
  • Wang, Zhiyuan
  • Chen, Jun
  • Wang, Wei

Abstract

High-speed railways (HSR) are susceptible to disruptions due to a variety of factors such as extreme weather. Improving the resilience of HSR is crucial for minimizing losses and improving operation efficiency. This paper aims to strengthen the resilience of HSR by reducing network vulnerability and enhancing network reliability. An HSR spatio-temporal network (HSRSN) model is constructed to simulate trains’ operation on railways. The model is grounded in the train timetable, combining infrastructure networks and train operations. Critical trains and critical nodes are components that exhibit reduced resilience when the network is subjected to disruptions. Percolation theory is used to identify the critical trains and the information entropy algorithm is introduced for identifying critical nodes. Additionally, a typhoon occurrence is chosen as the disruption for analyzing network vulnerability and connectivity. As for recovery post-disruptions, a strategy is proposed that utilizes timetable adjustments to mitigate the delays caused by disturbances. The performance of the proposed methods has been demonstrated in the case of the HSR network in Jiangsu Province, China. Results show that suspending critical trains during 13:00–15:00 and 17:00–19:00 would significantly reduce the network’s connectivity. Network vulnerability is correlated with both the information entropy of nodes and the timing of link occurrences.

Suggested Citation

  • Xiao, Yunjiang & Li, Yang & Liu, Weidong & Wang, Zhiyuan & Chen, Jun & Wang, Wei, 2025. "Resilience assessment of High-speed railway networks from the spatio-temporal perspective: A case study in Jiangsu Province, China," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001036
    DOI: 10.1016/j.ress.2025.110900
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.