Author
Listed:
- Montazeri, Mina
- Kulkarni, Chetan S.
- Fink, Olga
Abstract
Urban Air Mobility (UAM) aims to expand existing transportation networks in metropolitan areas by offering short flights either to transport passengers or cargo. Electric vertical takeoff and landing aircraft powered by lithium-ion battery packs are considered promising for such applications. Efficient mission planning is crucial, maximizing the number of flights per battery charge while ensuring completion even under unforeseen events. As batteries degrade, precise mission planning becomes challenging due to uncertainties in the end-of-discharge prediction. This often leads to adding safety margins, reducing the number or duration of potential flights on one battery charge. While predicting the end of discharge can support decision-making, it remains insufficient in case of unforeseen events, such as adverse weather conditions. This necessitates health-aware real-time control to address any unexpected events and extend the time until the end of charge while taking the current degradation state into account. This paper addresses the joint problem of mission planning and health-aware real-time control of operational parameters to prescriptively control the duration of one discharge cycle of the battery pack. We propose an algorithm that proactively prescribes operational parameters to extend the discharge cycle based on the battery’s current health status while optimizing the mission. The proposed deep reinforcement learning algorithm facilitates operational parameter optimization and path planning while accounting for the degradation state, even in the presence of uncertainties. Evaluation of simulated flights of a National Aeronautics and Space Administration (NASA) conceptual multirotor aircraft model, collected from Hardware-in-the-loop experiments, demonstrates the algorithm’s near-optimal performance across various operational scenarios, allowing adaptation to changed environmental conditions. The proposed health-aware prescriptive algorithm enables a more flexible and efficient operation not only in single aircraft but also in fleet operations, increasing the overall system throughput.
Suggested Citation
Montazeri, Mina & Kulkarni, Chetan S. & Fink, Olga, 2025.
"Prescribing optimal health-aware operation for urban air mobility with deep reinforcement learning,"
Reliability Engineering and System Safety, Elsevier, vol. 259(C).
Handle:
RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001000
DOI: 10.1016/j.ress.2025.110897
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001000. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.