IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v258y2025ics0951832025001218.html
   My bibliography  Save this article

Computational fluid dynamics -informed virtual safety assessment of steel-framed structure with fire-induced ductile failure

Author

Listed:
  • Shi, Zhiyi
  • Feng, Yuan
  • Egbelakin, Temitope
  • Yang, Chengwei
  • Gao, Wei

Abstract

This paper proposes a Computational Fluid Dynamics-Informed (CI) Virtual Safety Assessment (VSA) framework for predicting the time-dependent ductile failure of steel-framed buildings during fire incidents. By incorporating a CI-based physical model, the spatiotemporally nonlinear temperature field in real fire scenarios can be reproduced and used as thermal boundary conditions for sequential thermal-elastoplastic analysis, enabling the assessment of fire-induced structural responses. Additionally, non-deterministic material properties caused by manufacturing imperfections are considered to analyze their impacts on uncertain high-temperature structural ductile deformation. To achieve rapid assessment, a Virtual Modeling (VM) technique is introduced to capture the nonlinear relationship between physical input parameters and corresponding structural responses. The proposed CI-VSA framework is applied to two real steel structures, a steel-framed factory and a transmission tower, to verify its efficiency and accuracy. The results demonstrate that, compared to traditional simulation-based prediction methods, the proposed CI-VSA framework reduces computational resource consumption by 99% and achieves highly accurate predictions for most sample points, with relative errors below 1%, under a training sample size of 1,000. In practice, the CI-VSA framework enables continuous prediction of spatiotemporal structural responses through the analysis of fire-thermal-structural interactions, achieves real-time updates of structural safety statuses, and ultimately provides early-stage safety warnings.

Suggested Citation

  • Shi, Zhiyi & Feng, Yuan & Egbelakin, Temitope & Yang, Chengwei & Gao, Wei, 2025. "Computational fluid dynamics -informed virtual safety assessment of steel-framed structure with fire-induced ductile failure," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001218
    DOI: 10.1016/j.ress.2025.110918
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.