IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v258y2025ics0951832025001097.html
   My bibliography  Save this article

Physics-informed neural network supported wiener process for degradation modeling and reliability prediction

Author

Listed:
  • He, Zhongze
  • Wang, Shaoping
  • Shi, Jian
  • Liu, Di
  • Duan, Xiaochuan
  • Shang, Yaoxing

Abstract

Due to strong data-processing capabilities, machine learning haves been widely applied and combined with stochastic processes to quantify the inherent uncertainty in degradation modeling. These approaches typically first extract health index using machine learning methods, then model them using stochastic processes. While, the machine learning models and stochastic processes are independent of each other, making it difficult to ensure their mutual compatibility. Furthermore, actual available data is often limited, which restricts the accuracy of extracting health indexes through machine learning methods. Hence, this paper proposes a prediction method based on physics-informed neural network supported Wiener process, which includes offline modeling and online prediction stages. In the offline modeling phase, degradation path is fitted using a deep network framework, and degradation mechanics-related prior physical knowledge is embedded into the network along with the Wiener process through parametric expression. Accordingly, a compound loss function is designed to simultaneously train network parameters and process parameters. In the online prediction phase, real-time data is integrated using Bayesian inference methods to update the process parameters, ensuring the robustness of the model. The effectiveness of this method is confirmed using actual datasets, highlighting that the accuracy can be guaranteed even without path information and/or sufficient data.

Suggested Citation

  • He, Zhongze & Wang, Shaoping & Shi, Jian & Liu, Di & Duan, Xiaochuan & Shang, Yaoxing, 2025. "Physics-informed neural network supported wiener process for degradation modeling and reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001097
    DOI: 10.1016/j.ress.2025.110906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.