IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v258y2025ics0951832025001085.html
   My bibliography  Save this article

Dynamic model-driven dictionary learning-inspired domain adaptation strategy for cross-domain bearing fault diagnosis

Author

Listed:
  • Du, Zhengyu
  • Liu, Dongdong
  • Cui, Lingli

Abstract

Cross-domain fault diagnosis methods have been extensively investigated to improve practical engineering implications for data-driven models. However, the annotated data in practical applications is often insufficient, which makes it difficult to train the model effectively. Additionally, existing methods typically transfer knowledge learned from one device to another, where collected data from different devices exhibit different distribution representations. To address the above issues, a dynamic model-driven dictionary learning-inspired domain adaptation strategy is proposed. First, a novel dynamic model that quantitatively considers the effects of slip and lubrication is established to generate a mass of labeled data. Second, a novel deep discriminative transfer dictionary neural network (DDTDNN) is developed, in which a new multi-layer deep dictionary learning module (MDDL) and an adaptive bandwidth maximum mean discrepancy (ABMMD) metric are designed. MDDL leverages iterative soft thresholding and gradient descent processes to extract domain invariant representation within sparse representation space, while ABMMD is incorporated into the loss function and works alongside the classification loss to jointly influence the model. This new metric can dynamically set kernel widths by a median heuristic method, which helps the model to adapt the scale of the data and align feature distributions more effectively. The effectiveness of DDTDNN is validated on two cross-domain datasets. Experiment results show that DDTDNN achieves classification accuracies of 99.1 %, and 98.5 %, respectively, which outperforms several state-of-the-art methods.

Suggested Citation

  • Du, Zhengyu & Liu, Dongdong & Cui, Lingli, 2025. "Dynamic model-driven dictionary learning-inspired domain adaptation strategy for cross-domain bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001085
    DOI: 10.1016/j.ress.2025.110905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.