IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipbs0951832025000894.html
   My bibliography  Save this article

Developing a deep reinforcement learning model for safety risk prediction at subway construction sites

Author

Listed:
  • Zhou, Zhipeng
  • Zhuo, Wen
  • Cui, Jianqiang
  • Luan, Haiying
  • Chen, Yudi
  • Lin, Dong

Abstract

Underground construction work is heavily affected by surrounding hydrogeology, adjacent pipelines, and existing subway lines, which can lead to a high degree of uncertainty and generate safety risk on site. In order to overcome rigid thinking of causal factors within a structured framework and incorporate features of different accidents, this study adopted grounded theory for the investigation on factors contributing to workplace accidents in subway construction. The deep reinforcement learning model of double deep Q-network (DDQN) was developed for predicting subway construction safety risk, which integrated the advantage of reinforcement learning in decision making with the advantage of deep learning in objection perception. The findings denoted that DDQN performed better than other machine learning models inclusive of random forest, extreme gradient boosting, k-nearest neighbor, and support vector machine. Contributing factors relevant to subway construction accidents were quantitatively analyzed using permutation importance of attributes. It was beneficial for determining how the 37 contributing factors had negative effects on subway construction safety risk. Safety measures for risk reduction and controlling could be optimized according to permutation importance of individual contributing factor, which paved a new way for the promotion of safety management performance at subway construction sites.

Suggested Citation

  • Zhou, Zhipeng & Zhuo, Wen & Cui, Jianqiang & Luan, Haiying & Chen, Yudi & Lin, Dong, 2025. "Developing a deep reinforcement learning model for safety risk prediction at subway construction sites," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pb:s0951832025000894
    DOI: 10.1016/j.ress.2025.110885
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pb:s0951832025000894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.