IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipbs0951832025000675.html
   My bibliography  Save this article

Optimal allocation of defensive resources in regional railway networks under intentional attacks

Author

Listed:
  • Hou, Benwei
  • Chen, Pengxu
  • Zhao, Xudong
  • Chen, Zhilong

Abstract

Railway network is one of the busiest regional transportation infrastructures, which is exposed to a high risk of intentional attacks. Given the railway network stations have a larger service area, attackers may have different biases toward the valuation of railway stations or lines. This paper proposes a method for optimally allocating defensive resources based on a Bayesian game model and a comprehensive importance evaluation model of stations by multi-layer network models, aiming to reduce the losses of defenders. The attack strategy was made according to the importance of railway stations evaluated by three-layer network models, namely topology layer, the ridership layer and the travel time layer, which depict the features of railway networks and also reflect the variety of attacker's biases. The optimal allocation of defensive resources was obtained under the Nash equilibrium of Bayesian game. The proposed method is implemented in a regional railway network in north China, and the case network's risk under various attack strategies were compared to validate the applicability of this model. The application results show that the optimal defensive resources allocation based on the importance evaluation by three-layer models has the lowest risk considering the variety in the attacker's biases.

Suggested Citation

  • Hou, Benwei & Chen, Pengxu & Zhao, Xudong & Chen, Zhilong, 2025. "Optimal allocation of defensive resources in regional railway networks under intentional attacks," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pb:s0951832025000675
    DOI: 10.1016/j.ress.2025.110864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pb:s0951832025000675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.