IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipbs0951832025000547.html
   My bibliography  Save this article

A novel approach for structural system reliability evaluation using decoupled first-order reliability method and equivalent extreme-value event

Author

Listed:
  • Chen, Xin
  • Li, Jie

Abstract

The first-order reliability method (FORM) has been widely used in system reliability evaluation. However, calculating system reliability of structures with hundreds of components by FORM poses significant challenges. These difficulties arise because it requires determining multivariate normal integrals, which is generally impractical due to the high dimension of these integrals. Additionally, explicit expressions for the limit state functions (LSFs) of components cannot be generally obtained, leading to substantial computational costs for determining the gradients of LSFs. To address these issues, a novel approach called the equivalent extreme-value event-based decoupled FORM (EEVE-DFORM) is proposed. In EEVE-DFORM, the high-dimensional normal integrals are reduced to one-dimensional integrals of extreme value distributions according to the principle of equivalent extreme-value event (EEVE), and extreme value distributions are derived using the probability density evolution method (PDEM). In conjunction with a Galerkin-type stochastic finite element method (GSFEM), a decoupled FORM, where reliability computation is decoupled with finite element analysis, is developed to calculate the reliability of components with implicit LSFs. Five numerical examples are investigated to demonstrate the efficacy of the proposed methodology. The results indicate that the system reliability of series, parallel, and general structural systems can be accurately and efficiently determined using the proposed method, even when dealing with hundreds of components.

Suggested Citation

  • Chen, Xin & Li, Jie, 2025. "A novel approach for structural system reliability evaluation using decoupled first-order reliability method and equivalent extreme-value event," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pb:s0951832025000547
    DOI: 10.1016/j.ress.2025.110851
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pb:s0951832025000547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.