IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipas0951832025000043.html
   My bibliography  Save this article

Development of a CNN-based integrated surrogate model in evaluating the damage of buried pipeline under impact loads, considering the soil spatial variability

Author

Listed:
  • Jiang, Fengyuan
  • Dong, Sheng

Abstract

Determining the burial depth for offshore pipelines to resist impact load is challenging owing to the spatial variability of soil strengths, which proves to significantly affect failure behaviours of soils and pipelines. To facilitate the design, accurate and fast evaluation on pipeline damage is required. Here, an integrated surrogate model was developed to forecast impact damage of pipelines buried in spatially varied soils. Through coupling the random field and numerical simulation, a stochastic finite element analysis framework was derived and verified to yield the datasets; Based on the scheme of feature extraction – integration from convolution neural network, the surrogate model was established, which mapped the three-dimensional soil spatial field to the structural response. Prediction mechanism of the developed model was explored, where correlations among soil spatial distribution patterns, failure mechanisms and feature recognitions were discussed. The models enabled to capture the key features representing the failure mechanisms under random soil conditions, including the local failure mode of soil and pipe-soil interactions, which theoretically explained its feasibility in damage estimation. Further, model performance was comprehensively evaluated with regard to prediction accuracy, uncertainty quantification, and transfer learning, and the corresponding causes were investigated. Satisfactory performance and high computation efficiency were demonstrated.

Suggested Citation

  • Jiang, Fengyuan & Dong, Sheng, 2025. "Development of a CNN-based integrated surrogate model in evaluating the damage of buried pipeline under impact loads, considering the soil spatial variability," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000043
    DOI: 10.1016/j.ress.2025.110801
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.