IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipas0951832024008494.html
   My bibliography  Save this article

Mathematical modeling of solar farm performance degradation in a dynamic environment for condition-based maintenance

Author

Listed:
  • Shen, Yaxin
  • Fouladirad, Mitra
  • Grall, Antoine

Abstract

This paper aims to address the challenge of modeling and optimizing condition-based maintenance policies for a degraded solar farm in varying environmental conditions. Dust accumulation and temperature increases are the two main causes of performance reduction and energy loss in the system. In this research, dust accumulation is modeled by the non-homogeneous compound Poisson process, and three different mathematical models for the efficiency reduction of photovoltaic panels due to dust accumulation are considered. The effects of wind and rain, taken as covariates, on dust accumulation and temperature are investigated by stochastic process modeling. The covariate process is considered a time-homogeneous Markov chain with finite state space. The PV surface temperature is modeled by a non-homogeneous Markov chain with finite state space and transition matrices under covariate states. Different PV panels exhibit varied degradation rates, influenced by their position and tilt angle to sunlight. In the framework of the system, we derive multiple maintenance policies aimed at achieving the minimum cost criterion. The expected long-term average maintenance costs under different covariate conditions and maintenance policies are evaluated through simulation experiments to compare the effectiveness of each policy.

Suggested Citation

  • Shen, Yaxin & Fouladirad, Mitra & Grall, Antoine, 2025. "Mathematical modeling of solar farm performance degradation in a dynamic environment for condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832024008494
    DOI: 10.1016/j.ress.2024.110778
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024008494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832024008494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.