IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v256y2025ics0951832024008615.html
   My bibliography  Save this article

A feature separation transfer network with contrastive metric for remaining useful life prediction under different working conditions

Author

Listed:
  • Lyu, Yi
  • Shen, Zaichen
  • Zhou, Ningxu
  • Wen, Zhenfei
  • Chen, Ci

Abstract

Data-driven remaining useful life (RUL) prediction methods have demonstrated excellent performance in recent years. Among these, transfer learning (TL) is widely adopted for cross-condition RUL prediction due to its ability to mitigate feature discrepancies across domains. However, most existing TL methods focus primarily on the global alignment of shared features, neglecting subdomain-specific features from different degradation stages and the impact of domain-private features. In this paper, we propose a feature separation and adaptive alignment model to address this limitation. First, a feature separation network is designed to decompose the deep features into two categories: shared features, which capture the inherent degradation patterns, and domain-specific features, which account for heterogeneity across varying operating conditions. The shared features are further categorized into subdomains based on different degradation stages. To ensure effective alignment, we develop a deep adaptive alignment method that facilitates both global alignment of the shared features and local alignment of the subdomain-specific features. Additionally, a contrastive metric module is introduced to enhance the representativeness of the features, which has been shown to improve both feature separation and alignment effectiveness. Experimental results on two benchmark datasets demonstrate that our proposed method outperforms existing approaches across various evaluation metrics.

Suggested Citation

  • Lyu, Yi & Shen, Zaichen & Zhou, Ningxu & Wen, Zhenfei & Chen, Ci, 2025. "A feature separation transfer network with contrastive metric for remaining useful life prediction under different working conditions," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024008615
    DOI: 10.1016/j.ress.2024.110790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024008615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024008615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.