IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v256y2025ics0951832024008160.html
   My bibliography  Save this article

A generalized fault diagnosis framework for rotating machinery based on phase entropy

Author

Listed:
  • Wang, Zhenya
  • Zhang, Meng
  • Chen, Hui
  • Li, Jinghu
  • Li, Gaosong
  • Zhao, Jingshan
  • Yao, Ligang
  • Zhang, Jun
  • Chu, Fulei

Abstract

To enhance the generalization capability of rotating machinery fault diagnosis, a novel generalized fault diagnosis framework is proposed. Phase entropy is introduced as a new method for measuring mechanical signal complexity. Furthermore, it is extended to refined time-shift multi-scale phase entropy. The extended method effectively captures dynamic characteristic information across multiple scales, providing a comprehensive reflection of the equipment's state. Based on signal amplitude, multiple time-shift multi-scale decomposition sub-signals are constructed, and a scatter diagram is generated for each sub-signal. Subsequently, the diagram is partitioned into several regions, and the distribution probability of each region is calculated, enabling the extraction of stable and easily distinguishable features through the refined operation. Next, the one-versus-one-based twin support vector machine classifier is employed to achieve high-accuracy fault identification. Case analyses of a wind turbine, an aero-engine, a train transmission system, and an aero-bearing demonstrate that the accuracy, precision, recall, and F1 score of the proposed framework are over 99.51 %, 99.52 %, 99.51 %, and 99.51 %, respectively, using only five training samples per state. The proposed framework achieves higher accuracy compared to nine existing models via deep learning or machine learning. The aforementioned analysis results validate the accuracy and generalizability of the proposed framework.

Suggested Citation

  • Wang, Zhenya & Zhang, Meng & Chen, Hui & Li, Jinghu & Li, Gaosong & Zhao, Jingshan & Yao, Ligang & Zhang, Jun & Chu, Fulei, 2025. "A generalized fault diagnosis framework for rotating machinery based on phase entropy," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024008160
    DOI: 10.1016/j.ress.2024.110745
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024008160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024008160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.