IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v238y2023ics0951832023003915.html
   My bibliography  Save this article

An efficient meta-model-based method for uncertainty propagation problems involving non-parameterized probability-boxes

Author

Listed:
  • Zhang, Kun
  • Chen, Ning
  • Liu, Jian
  • Yin, Shaohui
  • Beer, Michael

Abstract

To capture inevitable aleatory and epistemic uncertainties in engineering problems, the probability box (P-box) model is usually an effective quantification tool. The non-parameterized P-box is more general and more flexible than parameterized P-box. While the efficiency of uncertainty propagation methods for non-parameterized P-box is crucial and demands urgently to improve. This paper proposes an efficient meta-model-based method for uncertainty propagation problems involving non-parameterized probability-boxes. In which, the typical Kriging meta-model is first utilized to build the mapping relationship between the non-parameterized P-box variables with the system response. Then, the constructed Kriging model is applied for interval analysis, and the cumulative distribution function of the response function can be obtained using interval Monte Carlo. During building the meta-model, an active learning strategy is proposed and applied to reduce the amount of training data needed from the perspective of exploration and exploitation. Since the prediction variance of Kriging model is not used, the proposed active learning method is not limited to Kriging model and can be applied in any existing meta-models. The numerical examples demonstrate that the proposed method has high accuracy and efficiency in handling nonlinearity, high-dimensional and complex engineering problems.

Suggested Citation

  • Zhang, Kun & Chen, Ning & Liu, Jian & Yin, Shaohui & Beer, Michael, 2023. "An efficient meta-model-based method for uncertainty propagation problems involving non-parameterized probability-boxes," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003915
    DOI: 10.1016/j.ress.2023.109477
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023003915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.