IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v213y2021ics0951832021001903.html
   My bibliography  Save this article

AADL-Based safety analysis using formal methods applied to aircraft digital systems

Author

Listed:
  • Stewart, Danielle
  • Liu, Jing (Janet)
  • Cofer, Darren
  • Heimdahl, Mats
  • Whalen, Michael W.
  • Peterson, Michael

Abstract

Model-based engineering tools are increasingly being used for system-level development of safety-critical systems. Architectural and behavioral models provide important information that can be leveraged to improve the system safety analysis process. Model-based design artifacts produced in early stage development activities can be used to perform system safety analysis, reducing costs, and providing accurate results throughout the system life-cycle. In this paper we describe an extension to the Architecture Analysis and Design Language (AADL) that supports modeling of system behavior under failure conditions. This safety annex enables the independent modeling of component failures and allows safety engineers to weave various types of fault behavior into the nominal system model. The accompanying tool support uses model checking to verify safety properties in the presence of faults and comprehensively enumerate all applicable fault combinations leading to failure conditions under quantitative objectives as part of the safety assessment process. The approach allows exploration of the effects of faulty component behavior on system level failure conditions without requiring explicit propagation specifications. It also supports a shared system model, a modeling language that can describe real-time embedded systems, and usable safety analysis artifacts.

Suggested Citation

  • Stewart, Danielle & Liu, Jing (Janet) & Cofer, Darren & Heimdahl, Mats & Whalen, Michael W. & Peterson, Michael, 2021. "AADL-Based safety analysis using formal methods applied to aircraft digital systems," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:reensy:v:213:y:2021:i:c:s0951832021001903
    DOI: 10.1016/j.ress.2021.107649
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021001903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107649?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yunpeng & Peng, Qibo & Ni, Qing & Wu, Xinfeng & Ye, Dongming, 2023. "Event-based safety and reliability analysis integration in model-based space mission design," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Zhixi Hu & Yi Zhu & Xiaoying Chen & Yu Zhao, 2022. "Safety Verification of Driving Resource Occupancy Rules Based on Functional Language," Future Internet, MDPI, vol. 14(2), pages 1-15, February.
    3. Xiao, Jun & Qu, Yuqing & She, Buxin & Song, Chenhui, 2023. "Operational boundary of flow network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Gan, Chenyu & Ding, Shuiting & Qiu, Tian & Liu, Peng & Ma, Qinglin, 2024. "Model-based safety analysis with time resolution (MBSA-TR) method for complex aerothermal–mechanical systems of aero-engines," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:213:y:2021:i:c:s0951832021001903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.