IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v205y2021ics095183202030747x.html
   My bibliography  Save this article

Proposal of a Validation Method of Failure Mode Analyses based on the Stress-Strength Model with a Support Vector Machine

Author

Listed:
  • Okabe, Tomoyuki
  • Otsuka, Yuichi

Abstract

This study aims at developing a validation method for the rational association between the design deviations, possible damage/fracture modes, and the eventual failure modes using SVM. Product failures due to damage/fracture modes of materials have recently increased, which suggests the importance of proactive prevention by failure modes analyses. Conventional Failure Modes and Effects Analyses (FMEA) lacks a specific process in determination of possible damage/fracture of component’ s materials. A modified Design Review Based on Failure Modes (DRBFM) or Design Deviation Method (DDM) were proposed to determine failure modes induced by damage/fracture modes of materials by possible associations from deviations in design/environmental factors to the deteriorations in stress-strength model. These methods still remain the possible errors in selection of rational damage/fracture modes to complicated patterns of design deviations, which suggests the importance of validation on the result of failure modes analyses. The procedure of DDM was formulated using sparse matrix and then analyzed using multi-class determination by Support Vector Machine(SVM). A case study of failure modes analyses to a laser-irradiation device using FMEA, DRBFM, the proposed DDM were conducted by individual three groups which had same number of 7 participants. The participants in the DDM group could predict more failure mechanisms by damage/fracture modes of materials than those by the DRBFM and FMEA groups. Furthermore, SVM showed higher precision rate from 77% to 100%, which evaluated the validity of specific failure modes. The SVM could determine the rational associations among the design deviations, the deviations in the SSM, and the corresponding damage/fracture modes.

Suggested Citation

  • Okabe, Tomoyuki & Otsuka, Yuichi, 2021. "Proposal of a Validation Method of Failure Mode Analyses based on the Stress-Strength Model with a Support Vector Machine," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:reensy:v:205:y:2021:i:c:s095183202030747x
    DOI: 10.1016/j.ress.2020.107247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202030747X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palmer, C. & Chung, P.W.H., 2009. "An automated system for batch hazard and operability studies," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1095-1106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhattacharjee, Pushparenu & Dey, Vidyut & Mandal, U.K. & Paul, Susmita, 2022. "Quantitative risk assessment of submersible pump components using Interval number-based Multinomial Logistic Regression(MLR) model," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Gassab, Adel & Sghaier, Rabi Ben & Fathallah, Raouf, 2023. "Fatigue reliability prediction of shape memory alloy parts based on multi-scale high cycle fatigue criterion," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Zh. A. Dayev & Ye. T. Nurushev, 2022. "Reduction of production risks by improving the method of failure mode and effect analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 278-288, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iaiani, Matteo & Tugnoli, Alessandro & Macini, Paolo & Cozzani, Valerio, 2021. "Outage and asset damage triggered by malicious manipulation of the control system in process plants," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Cui, Lin & Shu, Yidan & Wang, Zhaohui & Zhao, Jinsong & Qiu, Tong & Sun, Wenyong & Wei, Zhenqiang, 2012. "HASILT: An intelligent software platform for HAZOP, LOPA, SRS and SIL verification," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 56-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:205:y:2021:i:c:s095183202030747x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.