IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v171y2018icp9-17.html
   My bibliography  Save this article

Bayesian step stress accelerated degradation testing design: A multi-objective Pareto-optimal approach

Author

Listed:
  • Li, Xiaoyang
  • Hu, Yuqing
  • Zhou, Jiandong
  • Li, Xiang
  • Kang, Rui

Abstract

Step-stress accelerated degradation testing (SSADT) aims to access the reliability of products in a short time. Bayesian optimal design provides an effective alternative to capture parameters uncertainty, which has been widely employed in SSADT design by optimizing specified utility objective. However, there exist several utility objectives in Bayesian SSADT design; for the engineers, it causes much difficulty to choose the right utility specification with the budget consideration. In this study the problem is formulated as a multi-objective model motivated by the concept of Pareto optimization, which involves three objectives of maximizing the Kullback-Leibler (KL) divergence, minimizing the quadratic loss function of p-quantile lifetime at usage condition, and minimizing the test cost, simultaneously, in which the product degradation path is described by an inverse Gaussian (IG) process. The formulated programming is solved by NSGA-II to generate the Pareto of optimal solutions, which are further optimally reduced to gain a pruned Pareto set by data envelopment analysis (DEA) for engineering practice. The effectiveness of the proposed methodologies and solution method are experimentally illustrated by electrical connector’s SSADT.

Suggested Citation

  • Li, Xiaoyang & Hu, Yuqing & Zhou, Jiandong & Li, Xiang & Kang, Rui, 2018. "Bayesian step stress accelerated degradation testing design: A multi-objective Pareto-optimal approach," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 9-17.
  • Handle: RePEc:eee:reensy:v:171:y:2018:i:c:p:9-17
    DOI: 10.1016/j.ress.2017.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017304076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Han, David & Bai, Tianyu, 2020. "Design optimization of a simple step-stress accelerated life test – Contrast between continuous and interval inspections with non-uniform step durations," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    3. Li, Yang & Gao, Haifeng & Chen, Hongtian & Liu, Chun & Yang, Zhe & Zio, Enrico, 2024. "Accelerated degradation testing for lifetime analysis considering random effects and the influence of stress and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    4. Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    5. Woo, Seong-woo & Pecht, Michael & O'Neal, Dennis L., 2020. "Reliability design and case study of the domestic compressor subjected to repetitive internal stresses," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:171:y:2018:i:c:p:9-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.