Bayesian step stress accelerated degradation testing design: A multi-objective Pareto-optimal approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2017.11.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Han, David & Bai, Tianyu, 2020. "Design optimization of a simple step-stress accelerated life test – Contrast between continuous and interval inspections with non-uniform step durations," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
- Li, Yang & Gao, Haifeng & Chen, Hongtian & Liu, Chun & Yang, Zhe & Zio, Enrico, 2024. "Accelerated degradation testing for lifetime analysis considering random effects and the influence of stress and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
- Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
- Woo, Seong-woo & Pecht, Michael & O'Neal, Dennis L., 2020. "Reliability design and case study of the domestic compressor subjected to repetitive internal stresses," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
More about this item
Keywords
Reliability; Bayesian optimal design; Step stress accelerated degradation testing; Multi objective programming; NSGA II; DEA;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:171:y:2018:i:c:p:9-17. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.