IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v134y2015icp297-304.html
   My bibliography  Save this article

Robustness and sensitivity analysis in multiple criteria decision problems using rule learner techniques

Author

Listed:
  • Rocco S., Claudio M.
  • Hernandez, Elvis

Abstract

In many situations, a decision-maker is interested in assessing a set of alternatives characterized simultaneously by multiple criteria (attributes), and defining a ranking able to synthesize the global characteristics of each alternative, for example, from the best to the worst. This is the case of the assessment of several projects through attributes such as cost, profitability, among others. The behavior of each object, for every criterion, is quantified via numerical or categorical “performance values†. Several multiple criteria decision techniques could be used to this aim. However the base rank could be influenced by uncertain factors associated to specific criteria (e.g., the “ratio Benefit/Cost of a project†could be affected by variations in the interest rate) or by decision-maker preferences. In this situation, the decision-maker could be interested knowing what sets of factors are responsible of specific ranking conditions.

Suggested Citation

  • Rocco S., Claudio M. & Hernandez, Elvis, 2015. "Robustness and sensitivity analysis in multiple criteria decision problems using rule learner techniques," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 297-304.
  • Handle: RePEc:eee:reensy:v:134:y:2015:i:c:p:297-304
    DOI: 10.1016/j.ress.2014.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014000908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    2. Wolters, W. T. M. & Mareschal, B., 1995. "Novel types of sensitivity analysis for additive MCDM methods," European Journal of Operational Research, Elsevier, vol. 81(2), pages 281-290, March.
    3. Insua, David Rios & French, Simon, 1991. "A framework for sensitivity analysis in discrete multi-objective decision-making," European Journal of Operational Research, Elsevier, vol. 54(2), pages 176-190, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hernandez-Perdomo, Elvis A. & Mun, Johnathan & Rocco S., Claudio M., 2017. "Active management in state-owned energy companies: Integrating a real options approach into multicriteria analysis to make companies sustainable," Applied Energy, Elsevier, vol. 195(C), pages 487-502.
    2. Hernandez-Perdomo, Elvis & Guney, Yilmaz & Rocco, Claudio M., 2019. "A reliability model for assessing corporate governance using machine learning techniques," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 220-231.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentin Bertsch & Wolf Fichtner, 2016. "A participatory multi-criteria approach for power generation and transmission planning," Annals of Operations Research, Springer, vol. 245(1), pages 177-207, October.
    2. Jiménez, Antonio & Mateos, Alfonso & Sabio, Pilar, 2013. "Dominance intensity measure within fuzzy weight oriented MAUT: An application," Omega, Elsevier, vol. 41(2), pages 397-405.
    3. Podinovski, Vladislav V., 2012. "Sensitivity analysis for choice problems with partial preference relations," European Journal of Operational Research, Elsevier, vol. 221(1), pages 198-204.
    4. Mustajoki, Jyri & Hamalainen, Raimo P. & Lindstedt, Mats R.K., 2006. "Using intervals for global sensitivity and worst-case analyses in multiattribute value trees," European Journal of Operational Research, Elsevier, vol. 174(1), pages 278-292, October.
    5. Maddulapalli, A.K. & Azarm, S. & Boyars, A., 2007. "Sensitivity analysis for product design selection with an implicit value function," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1245-1259, August.
    6. Vetschera, Rudolf, 1996. "A recursive algorithm for volume-based sensitivity analysis of linear decision models," Discussion Papers, Series I 279, University of Konstanz, Department of Economics.
    7. Hodgkin, Julie & Belton, Valerie & Koulouri, Anastasia, 2005. "Supporting the intelligent MCDA user: A case study in multi-person multi-criteria decision support," European Journal of Operational Research, Elsevier, vol. 160(1), pages 172-189, January.
    8. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    9. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    10. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    11. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    12. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    13. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    14. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.
    15. Luis Pérez-Domínguez & Luis Alberto Rodríguez-Picón & Alejandro Alvarado-Iniesta & David Luviano Cruz & Zeshui Xu, 2018. "MOORA under Pythagorean Fuzzy Set for Multiple Criteria Decision Making," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    16. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    17. Kumar B, Pradeep, 2021. "Changing Objectives of Firms and Managerial Preferences: A Review of Models in Microeconomics," MPRA Paper 106967, University Library of Munich, Germany, revised 13 Mar 2021.
    18. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    19. Anirban Mukhopadhyay & Sugata Hazra & Debasish Mitra & C. Hutton & Abhra Chanda & Sandip Mukherjee, 2016. "Characterizing the multi-risk with respect to plausible natural hazards in the Balasore coast, Odisha, India: a multi-criteria analysis (MCA) appraisal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1495-1513, February.
    20. Chamoli, Sunil, 2015. "Hybrid FAHP (fuzzy analytical hierarchy process)-FTOPSIS (fuzzy technique for order preference by similarity of an ideal solution) approach for performance evaluation of the V down perforated baffle r," Energy, Elsevier, vol. 84(C), pages 432-442.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:134:y:2015:i:c:p:297-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.