IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v116y2013icp99-104.html
   My bibliography  Save this article

Optimal redundant systems for works with random processing time

Author

Listed:
  • Chen, M.
  • Nakagawa, T.

Abstract

This paper studies the optimal redundant policies for a manufacturing system processing jobs with random working times. The redundant units of the parallel systems and standby systems are subject to stochastic failures during the continuous production process. First, a job consisting of only one work is considered for both redundant systems and the expected cost functions are obtained. Next, each redundant system with a random number of units is assumed for a single work. The expected cost functions and the optimal expected numbers of units are derived for redundant systems. Subsequently, the production processes of N tandem works are introduced for parallel and standby systems, and the expected cost functions are also summarized. Finally, the number of works is estimated by a Poisson distribution for the parallel and standby systems. Numerical examples are given to demonstrate the optimization problems of redundant systems.

Suggested Citation

  • Chen, M. & Nakagawa, T., 2013. "Optimal redundant systems for works with random processing time," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 99-104.
  • Handle: RePEc:eee:reensy:v:116:y:2013:i:c:p:99-104
    DOI: 10.1016/j.ress.2013.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013000446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mingchih Chen & Toshio Nakagawa, 2012. "Optimal Scheduling Of Random Works With Reliability Application," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 29(05), pages 1-14.
    2. Toshio Nakagawa, 2008. "Advanced Reliability Models and Maintenance Policies," Springer Series in Reliability Engineering, Springer, number 978-1-84800-294-4, March.
    3. Toshio Nakagawa, 2005. "Maintenance Theory of Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-221-8, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xufeng & Chen, Mingchih & Nakagawa, Toshio, 2016. "Replacement policies for a parallel system with shortage and excess costs," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 89-95.
    2. Huang, PoTsang B. & Yu, Tsung-Ying & Chou, Yuan-ju & Lin, Yi-Ching, 2016. "Simulation method for dispatching national border security manpower to mitigate manpower shortage," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 43-51.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xufeng & Chen, Mingchih & Nakagawa, Toshio, 2016. "Replacement policies for a parallel system with shortage and excess costs," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 89-95.
    2. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    3. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2013. "Optimal policies for cumulative damage models with maintenance last and first," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 50-59.
    4. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George & Tsai, Hsin-Nan, 2018. "The generalized age maintenance policies with random working times," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 503-514.
    5. Michael Patriksson & Ann-Brith Strömberg & Adam Wojciechowski, 2015. "The stochastic opportunistic replacement problem, part II: a two-stage solution approach," Annals of Operations Research, Springer, vol. 224(1), pages 51-75, January.
    6. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George, 2019. "Extended optimal preventive replacement policies with random working cycle," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 398-415.
    7. Shafiee, Mahmood & Chukova, Stefanka, 2013. "Maintenance models in warranty: A literature review," European Journal of Operational Research, Elsevier, vol. 229(3), pages 561-572.
    8. Zhao, Xufeng & Al-Khalifa, Khalifa N. & Magid Hamouda, Abdel & Nakagawa, Toshio, 2017. "Age replacement models: A summary with new perspectives and methods," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 95-105.
    9. Zhao, Xufeng & Liu, Hu-Chen & Nakagawa, Toshio, 2015. "Where does “whichever occurs first†hold for preventive maintenance modelings?," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 203-211.
    10. Mingchih Chen & Xufeng Zhao & Toshio Nakagawa, 2019. "Replacement policies with general models," Annals of Operations Research, Springer, vol. 277(1), pages 47-61, June.
    11. Taghipour, Sharareh & Banjevic, Dragan & Jardine, Andrew K.S., 2010. "Periodic inspection optimization model for a complex repairable system," Reliability Engineering and System Safety, Elsevier, vol. 95(9), pages 944-952.
    12. Zhao, Xufeng & Nakagawa, Toshio, 2012. "Optimization problems of replacement first or last in reliability theory," European Journal of Operational Research, Elsevier, vol. 223(1), pages 141-149.
    13. Mingchih Chen & Toshio Nakagawa, 2012. "Optimal Scheduling Of Random Works With Reliability Application," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 29(05), pages 1-14.
    14. Nakagawa, T. & Mizutani, S. & Chen, M., 2010. "A summary of periodic and random inspection policies," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 906-911.
    15. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2017. "Comparisons of replacement policies with periodic times and repair numbers," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 161-170.
    16. Chin-Chih Chang, 2023. "Optimal maintenance policy for a k-out-of-n system with replacement first and last," Annals of Operations Research, Springer, vol. 323(1), pages 31-43, April.
    17. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    18. Ali, Sajid & Pievatolo, Antonio, 2018. "Time and magnitude monitoring based on the renewal reward process," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 97-107.
    19. Torrado, Nuria, 2022. "Optimal component-type allocation and replacement time policies for parallel systems having multi-types dependent components," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    20. Jing Wu & Cunhua Qian & Tadashi Dohi, 2024. "A Net Present Value Analysis of Opportunity-Based Age Replacement Models in Discrete Time," Mathematics, MDPI, vol. 12(10), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:116:y:2013:i:c:p:99-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.