IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v108y2012icp131-141.html
   My bibliography  Save this article

Finite-element-based system reliability analysis of fatigue-induced sequential failures

Author

Listed:
  • Lee, Young-Joo
  • Song, Junho

Abstract

When a structural system is subjected to repeated loadings, local fatigue-induced failures may initiate sequential failures and disproportionally large damage in the system. In order to quantify the likelihood of fatigue-induced sequential failures and identify critical failure sequences, a branch-and-bound method employing system reliability bounds (termed the B3 method) was recently developed and successfully demonstrated by a three-dimensional truss example. The B3 method identifies critical sequences of fatigue-induced failures in the decreasing order of their likelihood. Since the identified sequences are disjoint to each other, both lower and upper bounds on system failure probability are easily updated without performing additional system reliability analysis. The updated bounds provide reasonable criteria for terminating the branch-and-bound search without missing critical sequences or estimating the system-level risk inaccurately. Since the B3 method was originally developed for reliability analysis of discrete structures such as truss, however, the method is not applicable to continuum structures, which are often represented by finite element (FE) models. In particular, the method has limitations in describing general stress distributions in limit-state formulations, evaluating stress intensity range based on crack length, and in dealing with slow convergence of the upper and lower bounds for structures with high redundancy. In this paper, the B3 method is further developed for FE-based system reliability analysis of continuum structures by modifying the limit-state formulations, incorporating crack-growth analysis by external software, and introducing an additional search termination criterion. The proposed method is demonstrated by numerical examples including a continuum multi-layer Daniels system and an aircraft longeron structure.

Suggested Citation

  • Lee, Young-Joo & Song, Junho, 2012. "Finite-element-based system reliability analysis of fatigue-induced sequential failures," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 131-141.
  • Handle: RePEc:eee:reensy:v:108:y:2012:i:c:p:131-141
    DOI: 10.1016/j.ress.2012.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012000907
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Liu & Naiwei Lu & Xinfeng Yin & Mohammad Noori, 2016. "An adaptive support vector regression method for structural system reliability assessment and its application to a cable-stayed bridge," Journal of Risk and Reliability, , vol. 230(2), pages 204-219, April.
    2. Tian, Yuxuan & Guan, Xiaoshu & Sun, Huabin & Bao, Yuequan, 2024. "An adaptive structural dominant failure modes searching method based on graph neural network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Kim, Dong-Seok & Ok, Seung-Yong & Song, Junho & Koh, Hyun-Moo, 2013. "System reliability analysis using dominant failure modes identified by selective searching technique," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 316-331.
    4. Guan, Xiaoshu & Xiang, Zhengliang & Bao, Yuequan & Li, Hui, 2022. "Structural dominant failure modes searching method based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Jia, Xujie & Shen, Jingyuan & Xu, Fanqi & Ma, Ruihong & Song, Xueying, 2019. "Modular decomposition signature for systems with sequential failure effect," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 435-444.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:108:y:2012:i:c:p:131-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.