IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v72y2013icp76-83.html
   My bibliography  Save this article

Life cycle climate impacts of the US concrete pavement network

Author

Listed:
  • Loijos, Alexander
  • Santero, Nicholas
  • Ochsendorf, John

Abstract

Life cycle assessment (LCA) offers a comprehensive approach to evaluate and improve the environmental impacts of pavements. First, a general pavement LCA methodology is created that describes the concepts necessary to conduct a comprehensive pavement LCA. Second, the methodology is applied to the life cycle of concrete pavements to quantify current emissions across the road network. System boundaries are drawn to include all phases of the pavement life cycle – materials production, construction, use, maintenance, and end of life. Greenhouse gas emissions are quantified for twelve functional units, which evaluate average conditions for each major roadway classification in the United States. The results present the relative contribution of each component in the life cycle, the annual emissions occurring during the 40-year analysis period, and the sensitivity of these results to model parameters. It is found for all roads that the majority of emissions occur in year one – from cradle-to-gate materials production, and pavement construction – primarily due to cement production. The results are most sensitive to traffic volume, and then to parameters affecting the cement production. Based on emissions and their sensitivity, the LCA results suggest three broad reduction approaches: reducing embodied emissions, reducing use phase emissions, and reducing end-of-life emissions.

Suggested Citation

  • Loijos, Alexander & Santero, Nicholas & Ochsendorf, John, 2013. "Life cycle climate impacts of the US concrete pavement network," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 76-83.
  • Handle: RePEc:eee:recore:v:72:y:2013:i:c:p:76-83
    DOI: 10.1016/j.resconrec.2012.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344912002285
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2012.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dodoo, Ambrose & Gustavsson, Leif & Sathre, Roger, 2009. "Carbon implications of end-of-life management of building materials," Resources, Conservation & Recycling, Elsevier, vol. 53(5), pages 276-286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Dong & Fan, Lin & Shi, Feng & Liu, Qian & Wang, Yajing, 2017. "Comparative study of cement manufacturing with different strength grades using the coupled LCA and partial LCC methods—A case study in China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 60-68.
    2. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    3. Anastasiou, E.K. & Liapis, A. & Papayianni, I., 2015. "Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 1-8.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edgaras Linkevičius & Povilas Žemaitis & Marius Aleinikovas, 2023. "Sustainability Impacts of Wood- and Concrete-Based Frame Buildings," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    2. Mengwan Zhang & Ning Ma & Youneng Yang, 2023. "Carbon Footprint Assessment and Efficiency Measurement of Wood Processing Industry Based on Life Cycle Assessment," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    3. Chau, C.K. & Hui, W.K. & Ng, W.Y. & Powell, G., 2012. "Assessment of CO2 emissions reduction in high-rise concrete office buildings using different material use options," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 22-34.
    4. Chiara Piccardo & Camille Steinik & Simone Caffè & Alessio Argentoni & Chiara Calderini, 2024. "Primary Energy and Carbon Impacts of Structural Frames with Equivalent Design Criteria: Influence of Different Materials and Levels of Prefabrication," Sustainability, MDPI, vol. 16(10), pages 1-22, May.
    5. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. C. Bergeron, Francis, 2014. "Assessment of the coherence of the Swiss waste wood management," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 62-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:72:y:2013:i:c:p:76-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.