IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v55y2011i8p793-800.html
   My bibliography  Save this article

Biomass production for bioenergy using recycled wastewater in a natural waste treatment system

Author

Listed:
  • Fedler, Clifford B.
  • Duan, Runbin

Abstract

Bioenergy production from biomass is proposed as a method to solve part of the nation's energy problem. However, biomass and bioenergy production is questioned as an environment-friendly approach due to the potential increase of water pollution and the potential decrease of available water resource. A conceptual model of an integrated natural waste treatment system that produces biogas and biomass for bioenergy, treat waste and wastewater, conserve fresh water, and decrease the potential water pollution is presented. The potential biomass production from water hyacinth, duckweed, cattail, and knotgrass was investigated using recycling wastewater from an integrated natural waste treatment system from 2005 to 2008. Although the biomass production from recycling wastewater was not controlled for maximum production, this research identified the large potential impact that could be made if these systems were implemented. The overall average water hyacinth growth rate was high to 0.297kgwetwt./m2/day during a research period of over 500 days, including both the active and non-active growing seasons. The average daily growth rates of duckweed, cattail, and knotgrass were 0.099–0.127, 0.015, and 0.018kgwetwt./m2, respectively. This research illustrated that water hyacinth was a more promising aquatic plant biomass for bioenergy production when wastewater effluent was recycled as water and nutrient sources from an integrated natural waste treatment system.

Suggested Citation

  • Fedler, Clifford B. & Duan, Runbin, 2011. "Biomass production for bioenergy using recycled wastewater in a natural waste treatment system," Resources, Conservation & Recycling, Elsevier, vol. 55(8), pages 793-800.
  • Handle: RePEc:eee:recore:v:55:y:2011:i:8:p:793-800
    DOI: 10.1016/j.resconrec.2011.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344911000504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2011.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pinto, U. & Maheshwari, B.L. & Grewal, H.S., 2010. "Effects of greywater irrigation on plant growth, water use and soil properties," Resources, Conservation & Recycling, Elsevier, vol. 54(7), pages 429-435.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apurba Koley & Richik GhoshThakur & Kaushik Das & Nitu Gupta & Aishiki Banerjee & Binoy Kumar Show & Anudeb Ghosh & Shibani Chaudhury & Amit Kumar Hazra & Gaurav Nahar & Andrew B. Ross & Srinivasan Ba, 2024. "Growth Dynamics and Nutrient Removal from Biogas Slurry Using Water Hyacinth," Sustainability, MDPI, vol. 16(11), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karen Takahashi & Gabriela Araújo & Vali Pott & Nídia Yoshida & Liana Lima & Anderson Caires & Paula Paulo, 2022. "Relationship of Photosynthetic Activity of Polygonum acuminatum and Ludwigia lagunae with Physicochemical Aspects of Greywater in a Zero-Liquid Discharge System," Resources, MDPI, vol. 11(10), pages 1-16, September.
    2. Suhad A. A. A. N. Almuktar & Suhail N. Abed & Miklas Scholz, 2018. "Contaminations of Soil and Two Capsicum annuum Generations Irrigated by Reused Urban Wastewater Treated by Different Reed Beds," IJERPH, MDPI, vol. 15(8), pages 1-25, August.
    3. Ghulam Qadir & Vanessa Pino & Arianna Brambilla & Fernando Alonso-Marroquin, 2023. "Staircase Wetlands for the Treatment of Greywater and the Effect of Greywater on Soil Microbes," Sustainability, MDPI, vol. 15(7), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:55:y:2011:i:8:p:793-800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.