IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v54y2010i9p579-590.html
   My bibliography  Save this article

Understanding transportation energy and technical metabolism of construction waste recycling

Author

Listed:
  • Chong, Wai K.
  • Hermreck, Christopher

Abstract

Energy and resource efficiencies are both critical to achieve building design and construction sustainability. Embodied energy is a measure of the energy required to produce, install, and maintain materials, while technical metabolism enhances building design recyclability. Nearly all types of materials can be recycled. However, the technical metabolism of the materials depends on the existence of a market for these recycled materials, the regional recycling capacities, the total energy used to recycle, and the knowledge of the workers and designers about material recycling on a construction project. Although the concepts of embodied energy and technical metabolism have been around for many years, the concepts have not been extensively applied to construction projects. This research examines the transportation energy use for recycling construction wastes and the actual rate of recycling of these projects. The study concluded that the recyclability of construction wastes and the energy required for transporting the wastes are affected by regional variables, such as the distances between project sites and recycling facilities; social variables, such as regional purchasing habits; and design variables, such as the ease of deconstruction and recycling of construction materials. These variables affect the transportation need of shipping the wastes for recycling, and the percentage of materials that can be “metabolized.” These variables have to be developed into models that would help designers produce better estimates of the embodied energy of recycling and the recyclability of construction materials.

Suggested Citation

  • Chong, Wai K. & Hermreck, Christopher, 2010. "Understanding transportation energy and technical metabolism of construction waste recycling," Resources, Conservation & Recycling, Elsevier, vol. 54(9), pages 579-590.
  • Handle: RePEc:eee:recore:v:54:y:2010:i:9:p:579-590
    DOI: 10.1016/j.resconrec.2009.10.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344909002390
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2009.10.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lanfang, Liu & Issam, Srour & Chong, Wai K. & Christopher, Hermreck, 2015. "Integrating G2G, C2C and resource flow analysis into life cycle assessment framework: A case of construction steel’s resource loop," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 143-152.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mechthild Donner & Anne Verniquet & Jan Broeze & Katrin Kayser & Hugo de Vries, 2021. "Critical success and risk factors for circular business models valorising agricultural waste and by-products," Post-Print hal-03004851, HAL.
    2. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    3. CHEN, Helen S.Y., 2020. "Designing Sustainable Humanitarian Supply Chains," OSF Preprints m82ar, Center for Open Science.
    4. Jim Butcher, 2006. "The United Nations International Year of Ecotourism: a critical analysis of development implications," Progress in Development Studies, , vol. 6(2), pages 146-156, April.
    5. Denise Ravet, 2011. "Lean production: the link between supply chain and sustainable development in an international environment," Post-Print hal-00691666, HAL.
    6. Mara Del Baldo, 2012. "Corporate social responsibility and corporate governance in Italian SMEs: the experience of some “spirited businesses”," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 16(1), pages 1-36, February.
    7. Megan Devonald & Nicola Jones & Sally Youssef, 2022. "‘We Have No Hope for Anything’: Exploring Interconnected Economic, Social and Environmental Risks to Adolescents in Lebanon," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    8. Rigby, Dan & Woodhouse, Phil & Young, Trevor & Burton, Michael, 2001. "Constructing a farm level indicator of sustainable agricultural practice," Ecological Economics, Elsevier, vol. 39(3), pages 463-478, December.
    9. Michael Howes & Liana Wortley & Ruth Potts & Aysin Dedekorkut-Howes & Silvia Serrao-Neumann & Julie Davidson & Timothy Smith & Patrick Nunn, 2017. "Environmental Sustainability: A Case of Policy Implementation Failure?," Sustainability, MDPI, vol. 9(2), pages 1-17, January.
    10. Shiferaw, Bekele & Holden, Stein, 1999. "Soil Erosion and Smallholders' Conservation Decisions in the Highlands of Ethiopia," World Development, Elsevier, vol. 27(4), pages 739-752, April.
    11. Ibrahim Ari & Muammer Koc, 2018. "Sustainable Financing for Sustainable Development: Understanding the Interrelations between Public Investment and Sovereign Debt," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    12. Parnphumeesup, Piya & Kerr, Sandy A., 2011. "Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand," Energy Policy, Elsevier, vol. 39(6), pages 3591-3601, June.
    13. Pengji Wang & Adrian T. H. Kuah & Qinye Lu & Caroline Wong & K. Thirumaran & Emmanuel Adegbite & Wesley Kendall, 2021. "The impact of value perceptions on purchase intention of sustainable luxury brands in China and the UK," Journal of Brand Management, Palgrave Macmillan, vol. 28(3), pages 325-346, May.
    14. Christoph M. Schmidt & Nils aus dem Moore, 2014. "Wie geht es uns? Die W3-Indikatoren für eine neue Wohlstandsmessung," RWI Positionen, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, pages 16, 03.
    15. Katundu Imasiku & Valerie M. Thomas & Etienne Ntagwirumugara, 2020. "Unpacking Ecological Stress from Economic Activities for Sustainability and Resource Optimization in Sub-Saharan Africa," Sustainability, MDPI, vol. 12(9), pages 1-12, April.
    16. Chin-Shan Lu & Kuo-Chung Shang & Chi-Chang Lin, 2016. "Examining sustainability performance at ports: port managers’ perspectives on developing sustainable supply chains," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(8), pages 909-927, November.
    17. Kebede, Yohannes, 1993. "The Limits to Common Resource Management: The Bypassed Commons or Commons without Tragedy," MPRA Paper 662, University Library of Munich, Germany, revised 01 May 1993.
    18. John Stanley & Janet Stanley, 2023. "Improving Appraisal Methodology for Land Use Transport Measures to Reduce Risk of Social Exclusion," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    19. Piotr Siemiątkowski & Patryk Tomaszewski & Joanna Marszałek-Kawa & Janusz Gierszewski, 2020. "The Financing of Renewable Energy Sources and the Level of Sustainable Development of Poland’s Provinces in the Area of Environmental Order," Energies, MDPI, vol. 13(21), pages 1-19, October.
    20. J.C. Gaillard, 2010. "Vulnerability, capacity and resilience: Perspectives for climate and development policy," Journal of International Development, John Wiley & Sons, Ltd., vol. 22(2), pages 218-232.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:54:y:2010:i:9:p:579-590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.