IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v124y2017icp42-49.html
   My bibliography  Save this article

Assessing resource productivity for industrial parks using adjusted raw material consumption (ARMC)

Author

Listed:
  • Hu, Yun
  • Wen, Zongguo
  • Lee, Jason C.K.
  • Luo, Enhua

Abstract

Conventional resource productivity (RP) evaluation methods for industrial parks (IPs) are usually limited in scope, as they do not differentiate between the different types of resources. The real resource consumption and environmental impact were usually hidden. In response to this limitation, the Adjusted Raw Material Consumption (ARMC) method was introduced. The method took upstream production efficiency and resource grades into consideration. In this way, equivalent primary resource consumption (EPRC) was applied. In this paper, a set of equivalent coefficients estimation methods was established. Tianjin Economic-Technological and Development Area (TEDA) were chosen as a case study to demonstrate the application of ARMC method. By comparison with conventional methods, the ARMC method broadens the scope for calculating resource consumption by including upstream mining and refining of primary resources. It reveals the real resource consumption structure and determines key resource for holistic improvements to RP. Analysis on TEDA shows it has not yet fully achieved full decoupling between resource consumption and economic growth. Several industrial symbiosis activities have already been implemented to reduce aluminum and lead consumptions in TEDA. To more quickly achieve a greater increase in RP, and thus decoupling, efforts to reduce iron and copper consumptions should be made simultaneously. This evaluation is particularly beneficial for IPs, and for the government to promote more targeted measures to improve resource efficiency. This study was first attempt to assess resource consumption structure in IPs using ARMC method. Based on the results, a management procedure for IPs to improve RP value was developed.

Suggested Citation

  • Hu, Yun & Wen, Zongguo & Lee, Jason C.K. & Luo, Enhua, 2017. "Assessing resource productivity for industrial parks using adjusted raw material consumption (ARMC)," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 42-49.
  • Handle: RePEc:eee:recore:v:124:y:2017:i:c:p:42-49
    DOI: 10.1016/j.resconrec.2017.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917301088
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Il-Seuk & Kang, Hong-Yoon & Kim, Kyung-hwan & Kwak, In-Ho & Park, Kwang-Ho & Jo, Hyun-Jung & An, Sangjoon, 2014. "A suggestion for Korean resource productivity management policy with calculating and analyzing its national resource productivity," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 40-51.
    2. Bringezu, Stefan & Schutz, Helmut & Steger, Soren & Baudisch, Jan, 2004. "International comparison of resource use and its relation to economic growth: The development of total material requirement, direct material inputs and hidden flows and the structure of TMR," Ecological Economics, Elsevier, vol. 51(1-2), pages 97-124, November.
    3. M. Fischer‐Kowalski & F. Krausmann & S. Giljum & S. Lutter & A. Mayer & S. Bringezu & Y. Moriguchi & H. Schütz & H. Schandl & H. Weisz, 2011. "Methodology and Indicators of Economy‐wide Material Flow Accounting," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 855-876, December.
    4. Huysman, Sofie & Sala, Serenella & Mancini, Lucia & Ardente, Fulvio & Alvarenga, Rodrigo A.F. & De Meester, Steven & Mathieux, Fabrice & Dewulf, Jo, 2015. "Toward a systematized framework for resource efficiency indicators," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 68-76.
    5. Sun, Lu & Li, Hong & Dong, Liang & Fang, Kai & Ren, Jingzheng & Geng, Yong & Fujii, Minoru & Zhang, Wei & Zhang, Ning & Liu, Zhe, 2017. "Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 78-88.
    6. Seiji Hashimoto & Shigekazu Matsui & Yu Matsuno & Keisuke Nansai & Shinsuke Murakami & Yuichi Moriguchi, 2008. "What Factors Have Changed Japanese Resource Productivity?," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 657-668, October.
    7. Yu, Chenjian & Li, Huiquan & Jia, Xiaoping & Li, Qiang, 2015. "Improving resource utilization efficiency in China's mineral resource-based cities: A case study of Chengde, Hebei province," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 1-10.
    8. Raupova, Ozoda & Kamahara, Hirotsugu & Goto, Naohiro, 2014. "Assessment of physical economy through economy-wide material flow analysis in developing Uzbekistan," Resources, Conservation & Recycling, Elsevier, vol. 89(C), pages 76-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia K Steinberger & Fridolin Krausmann & Michael Getzner & Heinz Schandl & Jim West, 2013. "Development and Dematerialization: An International Study," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    2. Tobias Wendler, 2019. "About the Relationship Between Green Technology and Material Usage," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1383-1423, November.
    3. Valero, Alicia & Valero, Antonio & Calvo, Guiomar, 2015. "Using thermodynamics to improve the resource efficiency indicator GDP/DMC," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 110-117.
    4. Christa Liedtke & Katrin Bienge & Klaus Wiesen & Jens Teubler & Kathrin Greiff & Michael Lettenmeier & Holger Rohn, 2014. "Resource Use in the Production and Consumption System—The MIPS Approach," Resources, MDPI, vol. 3(3), pages 1-31, August.
    5. Auci, Sabrina & Vignani, Donatella, 2020. "Mines and quarries production: A driver analysis of withdrawals in Italy," Resources Policy, Elsevier, vol. 67(C).
    6. Tobias Wendler & Daniel Töbelmann & Jutta Günther, 2019. "Natural resources and technology - on the mitigating effect of green tech," Bremen Papers on Economics & Innovation 1905, University of Bremen, Faculty of Business Studies and Economics.
    7. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    8. Niza, Samuel & Ferrão, Paulo, 2006. "A transitional economy's metabolism: The case of Portugal," Resources, Conservation & Recycling, Elsevier, vol. 46(3), pages 265-280.
    9. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    10. Jean-Baptiste Bahers & Paula Higuera & Anne Ventura & Nicolas Antheaume, 2020. "The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    11. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    12. Xuan, Yanni & Yue, Qiang, 2017. "Scenario analysis on resource and environmental benefits of imported steel scrap for China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 186-198.
    13. Zhao, Xing & Guo, Yifan & Feng, Tianchu, 2023. "Towards green recovery: Natural resources utilization efficiency under the impact of environmental information disclosure," Resources Policy, Elsevier, vol. 83(C).
    14. Hu, Nan & Zheng, Bing, 2023. "Natural resources, education, and green economic development," Resources Policy, Elsevier, vol. 86(PB).
    15. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.
    16. Sirkka Koskela & Tuomas Mattila & Riina Antikainen & Ilmo Mäenpää, 2013. "Identifying Key Sectors and Measures for a Transition towards a Low Resource Economy," Resources, MDPI, vol. 2(3), pages 1-16, July.
    17. Yoshida, Keisuke & Fishman, Tomer & Okuoka, Keijiro & Tanikawa, Hiroki, 2017. "Material stock's overburden: Automatic spatial detection and estimation of domestic extraction and hidden material flows," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 165-175.
    18. Pothen, Frank & Schymura, Michael, 2014. "Bigger cakes with less ingredients? A comparison of material use of the world economy," ZEW Discussion Papers 14-030, ZEW - Leibniz Centre for European Economic Research.
    19. Bruckner, Martin & Wood, Richard & Moran, Daniel & Kuschnig, Nikolas & Wieland, Hanspeter & Maus, Victor & Börner, Jan, 2019. "FABIO - The Construction of the Food and Agriculture Biomass Input-Output Model," Ecological Economic Papers 27, WU Vienna University of Economics and Business.
    20. Wang, Zhiping & Feng, Chao & Chen, Jinyu & Huang, Jianbai, 2017. "The driving forces of material use in China: An index decomposition analysis," Resources Policy, Elsevier, vol. 52(C), pages 336-348.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:124:y:2017:i:c:p:42-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.