IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v120y2017icp27-37.html
   My bibliography  Save this article

Modelling in-use stocks and spatial distributions of household electronic devices and their contained metals based on household survey data

Author

Listed:
  • Zhu, Xuan
  • Lane, Ruth
  • Werner, T.T.

Abstract

Waste electrical and electronic equipment (WEEE) contains a significant amount of critical and precious metals. Recovery of these metal resources is important for both environmental and economic reasons. However, the potential for metal recovery from the distributed resource of used electronic devices in households has not been well understood. This paper explores such potential through modelling in-use stocks and spatial distributions of metal resources in household electronic devices based on household survey data, using Australia as a case study. We focused on ten categories of electronic devices: smart mobile phones, plain mobile phones, tablets, laptops, desktops, flat screen TVs, CRT TVs, monitors, hand held music players and game devices. Regression models were built using demographic variables as predictors to estimate the amount of electronic devices currently in use in households, and the bottom-up approach was employed to estimate the stocks of forty three metals contained in the devices. A set of maps were produced to show the estimated distribution of the resource of in-use household electronic devices and specific metals of interest contained in these devices. We find that some metals such as Platinum-group elements have more stocks in Australian household devices than the potential stocks in Australian mineral deposits. There is some intrinsic resource value contained in Australian household electronic goods, and interest in recovery of these particular metals might come sooner than for others.

Suggested Citation

  • Zhu, Xuan & Lane, Ruth & Werner, T.T., 2017. "Modelling in-use stocks and spatial distributions of household electronic devices and their contained metals based on household survey data," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 27-37.
  • Handle: RePEc:eee:recore:v:120:y:2017:i:c:p:27-37
    DOI: 10.1016/j.resconrec.2017.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917300022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cucchiella, Federica & D’Adamo, Idiano & Lenny Koh, S.C. & Rosa, Paolo, 2015. "Recycling of WEEEs: An economic assessment of present and future e-waste streams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 263-272.
    2. Helbig, Christoph & Wietschel, Lars & Thorenz, Andrea & Tuma, Axel, 2016. "How to evaluate raw material vulnerability - An overview," Resources Policy, Elsevier, vol. 48(C), pages 13-24.
    3. Chancerel, Perrine & Marwede, Max & Nissen, Nils F. & Lang, Klaus-Dieter, 2015. "Estimating the quantities of critical metals embedded in ICT and consumer equipment," Resources, Conservation & Recycling, Elsevier, vol. 98(C), pages 9-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panchal, Rohit & Singh, Anju & Diwan, Hema, 2021. "Economic potential of recycling e-waste in India and its impact on import of materials," Resources Policy, Elsevier, vol. 74(C).
    2. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    3. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    4. Neves, Sónia Almeida & Marques, António Cardoso & de Sá Lopes, Leonardo Batista, 2024. "Is environmental regulation keeping e-waste under control? Evidence from e-waste exports in the European Union," Ecological Economics, Elsevier, vol. 216(C).
    5. Ivan Deviatkin & Sanna Rousu & Malahat Ghoreishi & Mohammad Naji Nassajfar & Mika Horttanainen & Ville Leminen, 2022. "Implementation of Circular Economy Strategies within the Electronics Sector: Insights from Finnish Companies," Sustainability, MDPI, vol. 14(6), pages 1-11, March.
    6. Horațiu Vermeșan & Ancuța-Elena Tiuc & Marius Purcar, 2019. "Advanced Recovery Techniques for Waste Materials from IT and Telecommunication Equipment Printed Circuit Boards," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    7. Schnebele, Emily & Jaiswal, Kishor & Luco, Nicolas & Nassar, Nedal T., 2019. "Natural hazards and mineral commodity supply: Quantifying risk of earthquake disruption to South American copper supply," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    8. Maria Loredana Nicolescu & Marius Nicolae Jula, 2015. "Analysis Of Household Behaviour To The Collection Of Waste Electrical And Electronic Equipment In Romania," Global Economic Observer, "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences;Institute for World Economy of the Romanian Academy, vol. 3(2), pages 19-26, November.
    9. Secinaro, Silvana & Calandra, Davide & Lanzalonga, Federico & Ferraris, Alberto, 2022. "Electric vehicles’ consumer behaviours: Mapping the field and providing a research agenda," Journal of Business Research, Elsevier, vol. 150(C), pages 399-416.
    10. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    11. Georgios K. Vasios & Andreas Y. Troumbis & Yiannis Zevgolis & Maria N. Hatziantoniou & Marios F. Balis, 2019. "Environmental choices in the era of ecological modernization: siting of common interest facilities as a multi-alternative decision field problem in insular setups," Environment Systems and Decisions, Springer, vol. 39(1), pages 49-64, March.
    12. Daniel Baratieri Valente & Ricardo César da Silva Guabiroba & Marco Antonio Conejero & Marcelino Aurélio Vieira Silva & Aldara da Silva César, 2021. "Economic analysis of waste electrical and electronic equipment management: a study involving recycling cooperatives in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17628-17649, December.
    13. Sohani Vihanga Withanage & Komal Habib, 2021. "Life Cycle Assessment and Material Flow Analysis: Two Under-Utilized Tools for Informing E-Waste Management," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    14. Zeynep Ozsut Bogar & Askiner Gungor, 2023. "Forecasting Waste Mobile Phone (WMP) Quantity and Evaluating the Potential Contribution to the Circular Economy: A Case Study of Turkey," Sustainability, MDPI, vol. 15(4), pages 1-38, February.
    15. Mikkel Nøjgaard & Cristiano Smaniotto & Søren Askegaard & Ciprian Cimpan & Dmitry Zhilyaev & Henrik Wenzel, 2020. "How the Dead Storage of Consumer Electronics Creates Consumer Value," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    16. Fontecha, John E. & Nikolaev, Alexander & Walteros, Jose L. & Zhu, Zhenduo, 2022. "Scientists wanted? A literature review on incentive programs that promote pro-environmental consumer behavior: Energy, waste, and water," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    17. Yasmina Ziad & Nathalie Fabbe-Costes, 2023. "Upstream supply chain vulnerability assessment: a collaborative research project with a car manufacturer," Post-Print hal-04137625, HAL.
    18. Ciro Henrique de Araújo Fernandes & Lucio Camara e Silva & Patricia Guarnieri & Bárbara de Oliveira Vieira, 2021. "Multicriteria Model Proposition to Support the Management of Systems of E-Waste Collection," Logistics, MDPI, vol. 5(3), pages 1-20, September.
    19. Lapko, Yulia & Trucco, Paolo, 2018. "Influence of power regimes on identification and mitigation of material criticality: The case of platinum group metals in the automotive sector," Resources Policy, Elsevier, vol. 59(C), pages 360-370.
    20. Mentore Vaccari & Giovanni Vinti & Alessandra Cesaro & Vincenzo Belgiorno & Stefan Salhofer & Maria Isabel Dias & Aleksander Jandric, 2019. "WEEE Treatment in Developing Countries: Environmental Pollution and Health Consequences—An Overview," IJERPH, MDPI, vol. 16(9), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:120:y:2017:i:c:p:27-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.