IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v110y2016icp16-29.html
   My bibliography  Save this article

Potential demand for recoverable resources from Indonesian wastewater and solid waste

Author

Listed:
  • Kerstens, S.M.
  • Priyanka, A.
  • van Dijk, K.C.
  • De Ruijter, F.J.
  • Leusbrock, I.
  • Zeeman, G.

Abstract

Projected population growth and urbanization will become a challenge for finite natural resources, their distribution and local availability. At the same time, 2.5 billion people do not have access to sanitation facilities. Indonesia is one of these rapidly growing countries with a poorly developed municipal wastewater and solid waste sector. Without an integrating concept to recover and reuse resources, “waste flows” are discarded and their potential value is ignored. Therefore, the Indonesian backlog may be an opportunity, since it allows for direct introduction of a circular resource approach. To foster a sustainable municipal wastewater and solid waste management, the 20 years’ demand forecast of recoverable resources (phosphorus, compost, duckweed, plastic and paper) was analyzed. Phosphorus, compost and duckweed analysis was based on nutritional demand and not on market demand. Demand for recoverable plastic and paper related to the potential substitution of conventionally manufactured products. Phosphorus and compost demand analysis was based on (1) fertilizer requirements of 68 crops (staple food, horticulture and plantation), and (2) anticipated increase in production area of these crops. Duckweed demand as a protein-rich fish feed was analyzed based on the forecasted demand from aquaculture (tilapia and carp). The potentially recoverable (waste) plastic and paper to substitute conventional manufactured products were based on extrapolation of past trends in plastic and paper production in Indonesia. The potential contribution of recoverable products to the forecasted demand for 2035 was assessed for phosphorus (15%), compost (35%), duckweed (7%), plastic (66%) and paper (18%). A geographical discrepancy between potential recovery and demand location for phosphorus and compost was found. Therefore, the locations of potential markets should be considered in the planning and selection of wastewater and solid waste facilities. The presented methodology to assess the potential demand for recoverable resources from wastewater and solid waste may be applied in other countries as well.

Suggested Citation

  • Kerstens, S.M. & Priyanka, A. & van Dijk, K.C. & De Ruijter, F.J. & Leusbrock, I. & Zeeman, G., 2016. "Potential demand for recoverable resources from Indonesian wastewater and solid waste," Resources, Conservation & Recycling, Elsevier, vol. 110(C), pages 16-29.
  • Handle: RePEc:eee:recore:v:110:y:2016:i:c:p:16-29
    DOI: 10.1016/j.resconrec.2016.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916300362
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Beukering, Pieter J. H. & Bouman, Mathijs N., 2001. "Empirical Evidence on Recycling and Trade of Paper and Lead in Developed and Developing Countries," World Development, Elsevier, vol. 29(10), pages 1717-1737, October.
    2. Reijnders, L., 2014. "Phosphorus resources, their depletion and conservation, a review," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 32-49.
    3. Raitzer, David A., 2010. "Assessing the Impact of Policy-Oriented Research: The Case of CIFOR's Influence on the Indonesian Pulp and Paper Sector," World Development, Elsevier, vol. 38(10), pages 1506-1518, October.
    4. Pingali, Prabhu, 2007. "Westernization of Asian diets and the transformation of food systems: Implications for research and policy," Food Policy, Elsevier, vol. 32(3), pages 281-298, June.
    5. Mohee, Romeela & Soobhany, Nuhaa, 2014. "Comparison of heavy metals content in compost against vermicompost of organic solid waste: Past and present," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 206-213.
    6. Chen, Chung-Chiang & Chen, Yi-Tui, 2013. "Energy recovery or material recovery for MSW treatments?," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 37-44.
    7. Lazarevic, David & Aoustin, Emmanuelle & Buclet, Nicolas & Brandt, Nils, 2010. "Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 246-259.
    8. Taelman, Sue Ellen & De Meester, Steven & Van Dijk, Wim & da Silva, Vamilson & Dewulf, Jo, 2015. "Environmental sustainability analysis of a protein-rich livestock feed ingredient in The Netherlands: Microalgae production versus soybean import," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 61-72.
    9. Thibodeau, Charles & Monette, Frédéric & Glaus, Mathias, 2014. "Comparison of development scenarios of a black water source-separation sanitation system using life cycle assessment and environmental life cycle costing," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 38-54.
    10. Aretha Aprilia & Tetsuo Tezuka & Gert Spaargaren, 2012. "Household Solid Waste Management in Jakarta, Indonesia: A Socio-Economic Evaluation," Chapters, in: Luis Fernando Marmolejo Rebellon (ed.), Waste Management - An Integrated Vision, IntechOpen.
    11. David Lazarevic & Emmanuelle Aoustin & Nicolas Buclet & Nils Brandt, 2010. "Plastic Waste Management in the context of a European recycling society," Post-Print halshs-00584531, HAL.
    12. Gan, Peck Yean & Li, Zhi Dong, 2014. "Econometric study on Malaysia׳s palm oil position in the world market to 2035," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 740-747.
    13. William McDonough & Michael Braungart, 2000. "A World of Abundance," Interfaces, INFORMS, vol. 30(3), pages 55-65, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rigamonti, L. & Grosso, M. & Møller, J. & Martinez Sanchez, V. & Magnani, S. & Christensen, T.H., 2014. "Environmental evaluation of plastic waste management scenarios," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 42-53.
    2. Turner, David A. & Williams, Ian D. & Kemp, Simon, 2015. "Greenhouse gas emission factors for recycling of source-segregated waste materials," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 186-197.
    3. Rebekka Volk & Christoph Stallkamp & Justus J. Steins & Savina Padumane Yogish & Richard C. Müller & Dieter Stapf & Frank Schultmann, 2021. "Techno‐economic assessment and comparison of different plastic recycling pathways: A German case study," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1318-1337, October.
    4. Mayanti, Bening & Helo, Petri, 2022. "Closed-loop supply chain potential of agricultural plastic waste: Economic and environmental assessment of bale wrap waste recycling in Finland," International Journal of Production Economics, Elsevier, vol. 244(C).
    5. Huysman, Sofie & Debaveye, Sam & Schaubroeck, Thomas & Meester, Steven De & Ardente, Fulvio & Mathieux, Fabrice & Dewulf, Jo, 2015. "The recyclability benefit rate of closed-loop and open-loop systems: A case study on plastic recycling in Flanders," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 53-60.
    6. Väntsi, Olli & Kärki, Timo, 2015. "Environmental assessment of recycled mineral wool and polypropylene utilized in wood polymer composites," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 38-48.
    7. Beigbeder, Joana & Perrin, Didier & Mascaro, Jean-François & Lopez-Cuesta, José-Marie, 2013. "Study of the physico-chemical properties of recycled polymers from waste electrical and electronic equipment (WEEE) sorted by high resolution near infrared devices," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 105-114.
    8. Jinsong Li & Kenji Takeuchi, 2023. "Import ban and clean air: estimating the effect of China’s waste import ban on ozone pollution," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(4), pages 471-492, October.
    9. Simic, Vladimir & Dimitrijevic, Branka, 2013. "Risk explicit interval linear programming model for long-term planning of vehicle recycling in the EU legislative context under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 197-210.
    10. Ferrão, Paulo & Ribeiro, Paulo & Rodrigues, João & Marques, Alexandra & Preto, Miguel & Amaral, Miguel & Domingos, Tiago & Lopes, Ana & Costa, e Inês, 2014. "Environmental, economic and social costs and benefits of a packaging waste management system: A Portuguese case study," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 67-78.
    11. Lausselet, Carine & Cherubini, Francesco & Oreggioni, Gabriel David & del Alamo Serrano, Gonzalo & Becidan, Michael & Hu, Xiangping & Rørstad, Per Kr. & Strømman, Anders Hammer, 2017. "Norwegian Waste-to-Energy: Climate change, circular economy and carbon capture and storage," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 50-61.
    12. Toniolo, Sara & Mazzi, Anna & Pieretto, Chiara & Scipioni, Antonio, 2017. "Allocation strategies in comparative life cycle assessment for recycling: Considerations from case studies," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 249-261.
    13. Gómez, Miguel I. & Ricketts, Katie D., 2013. "Food value chain transformations in developing countries: Selected hypotheses on nutritional implications," Food Policy, Elsevier, vol. 42(C), pages 139-150.
    14. Leticia Regueiro & Richard Newton & Mohamed Soula & Diego Méndez & Björn Kok & David C. Little & Roberto Pastres & Johan Johansen & Martiña Ferreira, 2022. "Opportunities and limitations for the introduction of circular economy principles in EU aquaculture based on the regulatory framework," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2033-2044, December.
    15. Jones, R.E. & Speight, R.E. & Blinco, J.L. & O'Hara, I.M., 2022. "Biorefining within food loss and waste frameworks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Markus Gall & Andrea Schweighuber & Wolfgang Buchberger & Reinhold W. Lang, 2020. "Plastic Bottle Cap Recycling—Characterization of Recyclate Composition and Opportunities for Design for Circularity," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    17. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    18. Virna Estefania Moran-Rodas & Verena Preusse & Christine Wachendorf, 2022. "Agricultural Management Practices and Decision-Making in View of Soil Organic Matter in the Urbanizing Region of Bangalore," Sustainability, MDPI, vol. 14(10), pages 1-27, May.
    19. Dietrich, Jan Philipp & Schmitz, Christoph & Müller, Christoph & Fader, Marianela & Lotze-Campen, Hermann & Popp, Alexander, 2012. "Measuring agricultural land-use intensity – A global analysis using a model-assisted approach," Ecological Modelling, Elsevier, vol. 232(C), pages 109-118.
    20. Miguel Vigil & Maria Pedrosa-Laza & JV Alvarez Cabal & Francisco Ortega-Fernández, 2020. "Sustainability Analysis of Active Packaging for the Fresh Cut Vegetable Industry by Means of Attributional & Consequential Life Cycle Assessment," Sustainability, MDPI, vol. 12(17), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:110:y:2016:i:c:p:16-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.