IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v99y2006i1-2p144-155.html
   My bibliography  Save this article

Optimal design of work-in-process buffers

Author

Listed:
  • Faria, Jose
  • Matos, Manuel
  • Nunes, Eusebio

Abstract

No abstract is available for this item.

Suggested Citation

  • Faria, Jose & Matos, Manuel & Nunes, Eusebio, 2006. "Optimal design of work-in-process buffers," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 144-155, February.
  • Handle: RePEc:eee:proeco:v:99:y:2006:i:1-2:p:144-155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(04)00458-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamran Moinzadeh & Prabhu Aggarwal, 1997. "Analysis of a Production/Inventory System Subject to Random Disruptions," Management Science, INFORMS, vol. 43(11), pages 1577-1588, November.
    2. Mahadevan, B. & Narendran, T. T., 1993. "Buffer levels and choice of material handling device in flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 69(2), pages 166-176, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cruz, F.R.B. & Van Woensel, T. & Smith, J. MacGregor, 2010. "Buffer and throughput trade-offs in M/G/1/K queueing networks: A bi-criteria approach," International Journal of Production Economics, Elsevier, vol. 125(2), pages 224-234, June.
    2. Bertazzi, Luca, 2011. "Determining the optimal dimension of a work-in-process storage area," International Journal of Production Economics, Elsevier, vol. 131(2), pages 483-489, June.
    3. Gilberto Pérez-Lechuga & Francisco Venegas-Martínez & Marco A. Montufar-Benítez & Jaime Mora-Vargas, 2022. "On the Dynamics in Decoupling Buffers in Mass Manufacturing Lines: A Stochastic Approach," Mathematics, MDPI, vol. 10(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohebbi, E., 2008. "A note on a production control model for a facility with limited storage capacity in a random environment," European Journal of Operational Research, Elsevier, vol. 190(2), pages 562-570, October.
    2. Gregory A. DeCroix, 2013. "Inventory Management for an Assembly System Subject to Supply Disruptions," Management Science, INFORMS, vol. 59(9), pages 2079-2092, September.
    3. Chiu, Singa Wang & Chou, Chung-Li & Wu, Wen-Kuei, 2013. "Optimizing replenishment policy in an EPQ-based inventory model with nonconforming items and breakdown," Economic Modelling, Elsevier, vol. 35(C), pages 330-337.
    4. Harun Öztürk, 2019. "Modeling an inventory problem with random supply, inspection and machine breakdown," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 497-527, June.
    5. Zhu, Stuart X., 2015. "Analysis of dual sourcing strategies under supply disruptions," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 191-203.
    6. Hishamuddin, Hawa & Sarker, Ruhul A. & Essam, Daryl, 2014. "A recovery mechanism for a two echelon supply chain system under supply disruption," Economic Modelling, Elsevier, vol. 38(C), pages 555-563.
    7. Soroush Saghafian & Mark P. Van Oyen, 2016. "Compensating for Dynamic Supply Disruptions: Backup Flexibility Design," Operations Research, INFORMS, vol. 64(2), pages 390-405, April.
    8. Lu, Mengshi & Huang, Simin & Shen, Zuo-Jun Max, 2011. "Product substitution and dual sourcing under random supply failures," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1251-1265, September.
    9. Brian M. Lewis & Alan L. Erera & Maciek A. Nowak & White Chelsea C., 2013. "Managing Inventory in Global Supply Chains Facing Port-of-Entry Disruption Risks," Transportation Science, INFORMS, vol. 47(2), pages 162-180, May.
    10. Paul, Sanjoy Kumar & Sarker, Ruhul & Essam, Daryl, 2014. "Real time disruption management for a two-stage batch production–inventory system with reliability considerations," European Journal of Operational Research, Elsevier, vol. 237(1), pages 113-128.
    11. Mohebbi, Esmail, 2006. "A production-inventory model with randomly changing environmental conditions," European Journal of Operational Research, Elsevier, vol. 174(1), pages 539-552, October.
    12. Hishamuddin, H. & Sarker, R.A. & Essam, D., 2012. "A disruption recovery model for a single stage production-inventory system," European Journal of Operational Research, Elsevier, vol. 222(3), pages 464-473.
    13. Saeed Poormoaied & Ece Zeliha Demirci, 2021. "Analysis of an inventory system with emergency ordering option at the time of supply disruption," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 1007-1045, December.
    14. Joshi Harit & Mukherjee, Saral, 2017. "Transitions in currency denomination structure as supply disruption and demand distortion: Efficiency, Effectiveness and Bullwhip," IIMA Working Papers WP 2017-05-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    15. Harun Öztürk, 2021. "Optimal production run time for an imperfect production inventory system with rework, random breakdowns and inspection costs," Operational Research, Springer, vol. 21(1), pages 167-204, March.
    16. YalçInkaya, Özgür & Mirac Bayhan, G., 2009. "Modelling and optimization of average travel time for a metro line by simulation and response surface methodology," European Journal of Operational Research, Elsevier, vol. 196(1), pages 225-233, July.
    17. Luangkesorn, K.L. & Klein, G. & Bidanda, B., 2016. "Analysis of production systems with potential for severe disruptions," International Journal of Production Economics, Elsevier, vol. 171(P4), pages 478-486.
    18. David Perry & Wolfgang Stadje & Shelemyahu Zacks, 2005. "Sporadic and Continuous Clearing Policies for a Production/Inventory System Under an M / G Demand Process," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 354-368, May.
    19. Jeang, Angus, 2012. "Simultaneous determination of production lot size and process parameters under process deterioration and process breakdown," Omega, Elsevier, vol. 40(6), pages 774-781.
    20. Silbermayr, Lena & Minner, Stefan, 2014. "A multiple sourcing inventory model under disruption risk," International Journal of Production Economics, Elsevier, vol. 149(C), pages 37-46.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:99:y:2006:i:1-2:p:144-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.