IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v43y1996i2-3p175-192.html
   My bibliography  Save this article

A hybrid econometric--neural network modeling approach for sales forecasting

Author

Listed:
  • Luxhoj, James T.
  • Riis, Jens O.
  • Stensballe, Brian

Abstract

No abstract is available for this item.

Suggested Citation

  • Luxhoj, James T. & Riis, Jens O. & Stensballe, Brian, 1996. "A hybrid econometric--neural network modeling approach for sales forecasting," International Journal of Production Economics, Elsevier, vol. 43(2-3), pages 175-192, June.
  • Handle: RePEc:eee:proeco:v:43:y:1996:i:2-3:p:175-192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0925-5273(96)00039-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    2. Chu, Ching-Wu & Zhang, Guoqiang Peter, 2003. "A comparative study of linear and nonlinear models for aggregate retail sales forecasting," International Journal of Production Economics, Elsevier, vol. 86(3), pages 217-231, December.
    3. Au, Kin-Fan & Choi, Tsan-Ming & Yu, Yong, 2008. "Fashion retail forecasting by evolutionary neural networks," International Journal of Production Economics, Elsevier, vol. 114(2), pages 615-630, August.
    4. Hong Chen, 2010. "Using Financial and Macroeconomic Indicators to Forecast Sales of Large Development and Construction Firms," The Journal of Real Estate Finance and Economics, Springer, vol. 40(3), pages 310-331, April.
    5. Ayşe Soy Temür & Şule Yıldız, 2021. "Comparison of Forecasting Performance of ARIMA LSTM and HYBRID Models for The Sales Volume Budget of a Manufacturing Enterprise," Istanbul Business Research, Istanbul University Business School, vol. 50(1), pages 15-46, May.
    6. Sa-ngasoongsong, Akkarapol & Bukkapatnam, Satish T.S. & Kim, Jaebeom & Iyer, Parameshwaran S. & Suresh, R.P., 2012. "Multi-step sales forecasting in automotive industry based on structural relationship identification," International Journal of Production Economics, Elsevier, vol. 140(2), pages 875-887.
    7. Tasadduq, Imran & Rehman, Shafiqur & Bubshait, Khaled, 2002. "Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia," Renewable Energy, Elsevier, vol. 25(4), pages 545-554.
    8. Li Wang & Haofei Zou & Jia Su & Ling Li & Sohail Chaudhry, 2013. "An ARIMA‐ANN Hybrid Model for Time Series Forecasting," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 244-259, May.
    9. Tripathi Manas & Kumar Saurabh & Inani Sarveshwar Kumar, 2021. "Exchange Rate Forecasting Using Ensemble Modeling for Better Policy Implications," Journal of Time Series Econometrics, De Gruyter, vol. 13(1), pages 43-71, January.
    10. Hui Yuan & Wei Xu & Qian Li & Raymond Lau, 2018. "Topic sentiment mining for sales performance prediction in e-commerce," Annals of Operations Research, Springer, vol. 270(1), pages 553-576, November.
    11. Arunraj, Nari Sivanandam & Ahrens, Diane, 2015. "A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 321-335.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:43:y:1996:i:2-3:p:175-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.