IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v280y2025ics0925527324003578.html
   My bibliography  Save this article

Hybrid dispatching and genetic algorithm for the surface mount technology scheduling problem in semiconductor factories

Author

Listed:
  • Wang, Hung-Kai
  • Yang, Ting-Yun
  • Wang, Ya-Han
  • Wu, Chia-Le

Abstract

Surface mount technology (SMT) is widely used in semiconductor packaging factories to assemble electronic components onto printed circuit boards. Therefore, reducing bottlenecks in SMT implementation is crucial for achieving the optimal production efficiency and meeting customer demands in semiconductor factories. This study developed a hybrid dispatching and genetic algorithm (HDGA) which uses a genetic algorithm (GA) and dispatch rules, to reduce machine set-up times and increase delivery fulfillment rates. The proposed HDGA is embedded in a scheduling system to optimize production scheduling by considering all practical constraints associated with SMT implementation, such as machine and job statuses, lot consolidation constraints, processing time, works in progress and machine priority, multiple processing rounds, and issue-number-related constraints. To validate the effectiveness of this algorithm, the present study compared its performance with that of a traditional GA and a hybrid GA. The results indicated that the HDGA outperformed the other three algorithms. The proposed algorithm can improve productivity, product quality, product delivery rates, and overall scheduling efficiency in semiconductor factories.

Suggested Citation

  • Wang, Hung-Kai & Yang, Ting-Yun & Wang, Ya-Han & Wu, Chia-Le, 2025. "Hybrid dispatching and genetic algorithm for the surface mount technology scheduling problem in semiconductor factories," International Journal of Production Economics, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:proeco:v:280:y:2025:i:c:s0925527324003578
    DOI: 10.1016/j.ijpe.2024.109500
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527324003578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2024.109500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:280:y:2025:i:c:s0925527324003578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.