IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v280y2025ics0925527324003451.html
   My bibliography  Save this article

Multi-agent reinforcement learning for chiller system prediction and energy-saving optimization in semiconductor manufacturing

Author

Listed:
  • Lee, Chia-Yen
  • Li, Yao-Wen
  • Chang, Chih-Chun

Abstract

Energy consumption in cooling systems is one of the major environmental burdens in semiconductor manufacturing. Energy-saving measures not only help reduce energy costs but also effectively decrease carbon emissions. These improvements enhance the operational efficiency of the entire supply chain and ultimately benefit downstream enterprises, thereby promoting the sustainable development of the semiconductor supply chain. This study aims to optimize the energy savings in chiller systems in the semiconductor manufacturing. We investigate the interactions between various devices and show how the chiller's operational status affects the temperature setpoint. This study proposes a meta-prediction model to simulate the dynamic behavior of the chiller system, and also employ multi-agent reinforcement learning to support the multi-setpoint control for energy optimization. An empirical study of a semiconductor manufacturer in Taiwan was conducted to validate the proposed model. The results indicate that our developed solution successfully reduced the kilowatts per refrigerated ton (KW/RT) by approximately 2.78% in a practical application.

Suggested Citation

  • Lee, Chia-Yen & Li, Yao-Wen & Chang, Chih-Chun, 2025. "Multi-agent reinforcement learning for chiller system prediction and energy-saving optimization in semiconductor manufacturing," International Journal of Production Economics, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:proeco:v:280:y:2025:i:c:s0925527324003451
    DOI: 10.1016/j.ijpe.2024.109488
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527324003451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2024.109488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:280:y:2025:i:c:s0925527324003451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.