IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v248y2022ics0925527322000767.html
   My bibliography  Save this article

Sustainable supply chain network design: A case of the glass manufacturer in Asia

Author

Listed:
  • Sadjady Naeeni, Hannan
  • Sabbaghi, Navid

Abstract

Traditionally, profit maximization was the major objective for many businesses. However, due to growing stakeholders’ pressure and awareness about the social and environmental impacts of supply chain activities, many companies are now focused on optimizing their profits, while reducing negative impacts of their activities on planet and society. While sustainable development requires concurrent and balanced consideration of social, environmental and economic dimensions, unbalanced approaches have been adopted both in real world practices, and in academic literature. We contribute to the stream of research in the literature that tries to address this gap. We propose a multi-objective mixed-integer programming (MOMIP) model for sustainable supply chain network design (SSCND), encompassing economic, environmental, and social objectives. Both strategic and tactical network design decision variables are considered, including location, size, and technology type of facilities, along with determining the flow of materials and transportation modes. The Normalized Normal Constraint Method is applied to generate evenly distributed Pareto frontiers. The case of a glass manufacturing company in Asia is used to demonstrate applicability of the model and solution procedure to real-world problems. Non-dominated solutions are analyzed, and a more sustainable and balanced network design alternative is proposed, which outperforms the current network configuration in terms of all three dimensions of sustainability. Managerial implications and future research directions are discussed.

Suggested Citation

  • Sadjady Naeeni, Hannan & Sabbaghi, Navid, 2022. "Sustainable supply chain network design: A case of the glass manufacturer in Asia," International Journal of Production Economics, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:proeco:v:248:y:2022:i:c:s0925527322000767
    DOI: 10.1016/j.ijpe.2022.108483
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527322000767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2022.108483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eskandarpour, Majid & Dejax, Pierre & Miemczyk, Joe & Péton, Olivier, 2015. "Sustainable supply chain network design: An optimization-oriented review," Omega, Elsevier, vol. 54(C), pages 11-32.
    2. Waltho, Cynthia & Elhedhli, Samir & Gzara, Fatma, 2019. "Green supply chain network design: A review focused on policy adoption and emission quantification," International Journal of Production Economics, Elsevier, vol. 208(C), pages 305-318.
    3. Kadambala, Dinesh K. & Subramanian, Nachiappan & Tiwari, Manoj K. & Abdulrahman, Muhammad & Liu, Chang, 2017. "Closed loop supply chain networks: Designs for energy and time value efficiency," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 382-393.
    4. Varsei, Mohsen & Polyakovskiy, Sergey, 2017. "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Elsevier, vol. 66(PB), pages 236-247.
    5. Caruso, C. & Colorni, A. & Paruccini, M., 1993. "The regional urban solid waste management system: A modelling approach," European Journal of Operational Research, Elsevier, vol. 70(1), pages 16-30, October.
    6. Mohammadi, M. & Torabi, S.A. & Tavakkoli-Moghaddam, R., 2014. "Sustainable hub location under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 89-115.
    7. Papapostolou, Christiana & Kondili, Emilia & Kaldellis, John K., 2011. "Development and implementation of an optimisation model for biofuels supply chain," Energy, Elsevier, vol. 36(10), pages 6019-6026.
    8. Jie Xu & Nan Liu, 2017. "Erratum to: Research on closed loop supply chain with reference price effect," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 65-67, January.
    9. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    10. Majid Eskandarpour & Pierre Dejax & Olivier Péton, 2021. "Multi-directional local search for sustainable supply chain network design," International Journal of Production Research, Taylor & Francis Journals, vol. 59(2), pages 412-428, January.
    11. Dehghanian, Farzad & Mansour, Saeed, 2009. "Designing sustainable recovery network of end-of-life products using genetic algorithm," Resources, Conservation & Recycling, Elsevier, vol. 53(10), pages 559-570.
    12. Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel & Barbosa-Póvoa, Ana Paula, 2014. "Planning a sustainable reverse logistics system: Balancing costs with environmental and social concerns," Omega, Elsevier, vol. 48(C), pages 60-74.
    13. Eskandarpour, Majid & Zegordi, Seyed Hessameddin & Nikbakhsh, Ehsan, 2013. "A parallel variable neighborhood search for the multi-objective sustainable post-sales network design problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 117-131.
    14. Hau L. Lee & Christopher S. Tang, 2018. "Socially and Environmentally Responsible Value Chain Innovations: New Operations Management Research Opportunities," Management Science, INFORMS, vol. 64(3), pages 983-996, March.
    15. Devika, K. & Jafarian, A. & Nourbakhsh, V., 2014. "Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques," European Journal of Operational Research, Elsevier, vol. 235(3), pages 594-615.
    16. Jie Xu & Nan Liu, 2017. "Research on closed loop supply chain with reference price effect," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 51-64, January.
    17. Ameknassi, Lhoussaine & Aït-Kadi, Daoud & Rezg, Nidhal, 2016. "Integration of logistics outsourcing decisions in a green supply chain design: A stochastic multi-objective multi-period multi-product programming model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 165-184.
    18. Brandenburg, Marcus & Govindan, Kannan & Sarkis, Joseph & Seuring, Stefan, 2014. "Quantitative models for sustainable supply chain management: Developments and directions," European Journal of Operational Research, Elsevier, vol. 233(2), pages 299-312.
    19. Tang, Christopher S. & Zhou, Sean, 2012. "Research advances in environmentally and socially sustainable operations," European Journal of Operational Research, Elsevier, vol. 223(3), pages 585-594.
    20. Kalyanmoy Deb & Kalyanmoy Deb, 2014. "Multi-objective Optimization," Springer Books, in: Edmund K. Burke & Graham Kendall (ed.), Search Methodologies, edition 2, chapter 0, pages 403-449, Springer.
    21. Pishvaee, M.S. & Razmi, J. & Torabi, S.A., 2014. "An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 14-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengfei Chen & Mohamed Kharbeche & Mohamed Haouari & Weihong Grace Guo, 2024. "A simulation-optimization framework for food supply chain network design to ensure food accessibility under uncertainty," Papers 2406.04439, arXiv.org, revised Jun 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    2. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    3. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    4. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    5. Majid Eskandarpour & Pierre Dejax & Olivier Péton, 2019. "Multi-Directional Local Search for Sustainable Supply Chain Network Design," Post-Print hal-02407741, HAL.
    6. Martins, C.L. & Melo, M.T. & Pato, M.V., 2019. "Redesigning a food bank supply chain network in a triple bottom line context," International Journal of Production Economics, Elsevier, vol. 214(C), pages 234-247.
    7. Aleksander Banasik & Jacqueline M. Bloemhof-Ruwaard & Argyris Kanellopoulos & G. D. H. Claassen & Jack G. A. J. Vorst, 2018. "Multi-criteria decision making approaches for green supply chains: a review," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 366-396, September.
    8. Brandenburg, Marcus, 2017. "A hybrid approach to configure eco-efficient supply chains under consideration of performance and risk aspects," Omega, Elsevier, vol. 70(C), pages 58-76.
    9. Chamari Pamoshika Jayarathna & Duzgun Agdas & Les Dawes & Tan Yigitcanlar, 2021. "Multi-Objective Optimization for Sustainable Supply Chain and Logistics: A Review," Sustainability, MDPI, vol. 13(24), pages 1-31, December.
    10. Jyoti Dhingra Darbari & Devika Kannan & Vernika Agarwal & P. C. Jha, 2019. "Fuzzy criteria programming approach for optimising the TBL performance of closed loop supply chain network design problem," Annals of Operations Research, Springer, vol. 273(1), pages 693-738, February.
    11. Varsei, Mohsen & Polyakovskiy, Sergey, 2017. "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Elsevier, vol. 66(PB), pages 236-247.
    12. Fahimnia, Behnam & Sarkis, Joseph & Eshragh, Ali, 2015. "A tradeoff model for green supply chain planning:A leanness-versus-greenness analysis," Omega, Elsevier, vol. 54(C), pages 173-190.
    13. Tautenhain, Camila P.S. & Barbosa-Povoa, Ana Paula & Mota, Bruna & Nascimento, Mariá C.V., 2021. "An efficient Lagrangian-based heuristic to solve a multi-objective sustainable supply chain problem," European Journal of Operational Research, Elsevier, vol. 294(1), pages 70-90.
    14. Eskandarpour, Majid & Dejax, Pierre & Miemczyk, Joe & Péton, Olivier, 2015. "Sustainable supply chain network design: An optimization-oriented review," Omega, Elsevier, vol. 54(C), pages 11-32.
    15. Fattahi, Mohammad & Mosadegh, Hadi & Hasani, Aliakbar, 2021. "Sustainable planning in mining supply chains with renewable energy integration: A real-life case study," Resources Policy, Elsevier, vol. 74(C).
    16. Mota, Bruna & Gomes, Maria Isabel & Carvalho, Ana & Barbosa-Povoa, Ana Paula, 2018. "Sustainable supply chains: An integrated modeling approach under uncertainty," Omega, Elsevier, vol. 77(C), pages 32-57.
    17. Luttiely Santos Oliveira & Ricardo Luiz Machado, 2021. "Application of optimization methods in the closed-loop supply chain: a literature review," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 357-400, February.
    18. Kadziński, Miłosz & Tervonen, Tommi & Tomczyk, Michał K. & Dekker, Rommert, 2017. "Evaluation of multi-objective optimization approaches for solving green supply chain design problems," Omega, Elsevier, vol. 68(C), pages 168-184.
    19. Xiaobao Zhu & Jing Shi & Fengjie Xie & Rouqi Song, 2020. "Pricing strategy and system performance in a cloud-based manufacturing system built on blockchain technology," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1985-2002, December.
    20. Rohmer, S.U.K. & Gerdessen, J.C. & Claassen, G.D.H., 2019. "Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1149-1164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:248:y:2022:i:c:s0925527322000767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.