IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v232y2021ics0925527320303133.html
   My bibliography  Save this article

Integrated self-driving travel scheme planning

Author

Listed:
  • Du, Jiaoman
  • Zhou, Jiandong
  • Li, Xiang
  • Li, Lei
  • Guo, Ao

Abstract

Travel scheme planning is a crucial operational-level decision to be made in travel supply chain management. We investigate an integrated self-driving travel scheme planning (ISTSP) problem to optimize routing, hotel selection, and time scheduling under several streams of personalized considerations: best site-viewing time windows, rest requirements, and preference for site visiting sequences. The travel scheme planning problem is formulated in two models: (i) total cost minimization, and (ii) bi-objective optimization with total cost minimization and tourists’ utility maximization. A heuristic solution framework integrating multi-categorical attribute K-means clustering, dynamic programming algorithm, and constraint satisfaction procedure is designed to solve these two models. Finally, we provide illustrative examples to demonstrate the effectiveness and validity of the proposed models and solution methods.

Suggested Citation

  • Du, Jiaoman & Zhou, Jiandong & Li, Xiang & Li, Lei & Guo, Ao, 2021. "Integrated self-driving travel scheme planning," International Journal of Production Economics, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:proeco:v:232:y:2021:i:c:s0925527320303133
    DOI: 10.1016/j.ijpe.2020.107963
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527320303133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2020.107963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Divsalar, A. & Vansteenwegen, P. & Sörensen, K. & Cattrysse, D., 2014. "A memetic algorithm for the orienteering problem with hotel selection," European Journal of Operational Research, Elsevier, vol. 237(1), pages 29-49.
    2. A. L. Kok & C. M. Meyer & H. Kopfer & J. M. J. Schutten, 2010. "A Dynamic Programming Heuristic for the Vehicle Routing Problem with Time Windows and European Community Social Legislation," Transportation Science, INFORMS, vol. 44(4), pages 442-454, November.
    3. Kucukkoc, Ibrahim & Li, Zixiang & Karaoglan, Aslan D. & Zhang, David Z., 2018. "Balancing of mixed-model two-sided assembly lines with underground workstations: A mathematical model and ant colony optimization algorithm," International Journal of Production Economics, Elsevier, vol. 205(C), pages 228-243.
    4. Angelelli, Enrico & Grazia Speranza, Maria, 2002. "The periodic vehicle routing problem with intermediate facilities," European Journal of Operational Research, Elsevier, vol. 137(2), pages 233-247, March.
    5. Cheng, Chen-Yang & Chen, Yin-Yann & Chen, Tzu-Li & Jung-Woon Yoo, John, 2015. "Using a hybrid approach based on the particle swarm optimization and ant colony optimization to solve a joint order batching and picker routing problem," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 805-814.
    6. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    7. P Vansteenwegen & W Souffriau & K Sörensen, 2012. "The travelling salesperson problem with hotel selection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(2), pages 207-217, February.
    8. Crevier, Benoit & Cordeau, Jean-Francois & Laporte, Gilbert, 2007. "The multi-depot vehicle routing problem with inter-depot routes," European Journal of Operational Research, Elsevier, vol. 176(2), pages 756-773, January.
    9. Bektas, Tolga, 2006. "The multiple traveling salesman problem: an overview of formulations and solution procedures," Omega, Elsevier, vol. 34(3), pages 209-219, June.
    10. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    11. Zheng, Weimin & Liao, Zhixue & Qin, Jing, 2017. "Using a four-step heuristic algorithm to design personalized day tour route within a tourist attraction," Tourism Management, Elsevier, vol. 62(C), pages 335-349.
    12. Jonas De Vos & Patricia L. Mokhtarian & Tim Schwanen & Veronique Van Acker & Frank Witlox, 2016. "Travel mode choice and travel satisfaction: bridging the gap between decision utility and experienced utility," Transportation, Springer, vol. 43(5), pages 771-796, September.
    13. Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
    14. Dumrongsiri, Aussadavut & Fan, Ming & Jain, Apurva & Moinzadeh, Kamran, 2008. "A supply chain model with direct and retail channels," European Journal of Operational Research, Elsevier, vol. 187(3), pages 691-718, June.
    15. Rodríguez, Beatriz & Molina, Julián & Pérez, Fátima & Caballero, Rafael, 2012. "Interactive design of personalised tourism routes," Tourism Management, Elsevier, vol. 33(4), pages 926-940.
    16. Anzanello, Michel J. & Fogliatto, Flavio S., 2011. "Selecting the best clustering variables for grouping mass-customized products involving workers' learning," International Journal of Production Economics, Elsevier, vol. 130(2), pages 268-276, April.
    17. CASTRO, Marco & SÖRENSEN, Kenneth & VANSTEENWEGEN, Pieter & GOOS, Peter, 2012. "A simple GRASP+VND for the travelling salesperson problem with hotel selection," Working Papers 2012024, University of Antwerp, Faculty of Business and Economics.
    18. Kotiloglu, S. & Lappas, T. & Pelechrinis, K. & Repoussis, P.P., 2017. "Personalized multi-period tour recommendations," Tourism Management, Elsevier, vol. 62(C), pages 76-88.
    19. Margolis, Joshua T. & Sullivan, Kelly M. & Mason, Scott J. & Magagnotti, Mariah, 2018. "A multi-objective optimization model for designing resilient supply chain networks," International Journal of Production Economics, Elsevier, vol. 204(C), pages 174-185.
    20. Yao, Liufang & Parlar, Mahmut, 2019. "Product recall timing optimization using dynamic programming," International Journal of Production Economics, Elsevier, vol. 210(C), pages 1-14.
    21. Andreas Baltz & Mourad El Ouali & Gerold J&aauml;ger & Volkmar Sauerland & Anand Srivastav, 2015. "Exact and heuristic algorithms for the Travelling Salesman Problem with Multiple Time Windows and Hotel Selection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(4), pages 615-626, April.
    22. CASTRO, Marco & SÖRENSEN, Kenneth & GOOS, Peter & VANSTEENWEGEN, Pieter, 2014. "The multiple travelling salesperson problem with hotel selection," Working Papers 2014030, University of Antwerp, Faculty of Business and Economics.
    23. Mafakheri, Fereshteh & Breton, Michele & Ghoniem, Ahmed, 2011. "Supplier selection-order allocation: A two-stage multiple criteria dynamic programming approach," International Journal of Production Economics, Elsevier, vol. 132(1), pages 52-57, July.
    24. Dulebenets, Maxim A. & Ozguven, Eren Erman, 2017. "Vessel scheduling in liner shipping: Modeling transport of perishable assets," International Journal of Production Economics, Elsevier, vol. 184(C), pages 141-156.
    25. Divsalar, A. & Vansteenwegen, P. & Cattrysse, D., 2013. "A variable neighborhood search method for the orienteering problem with hotel selection," International Journal of Production Economics, Elsevier, vol. 145(1), pages 150-160.
    26. Haass, Rasmus & Dittmer, Patrick & Veigt, Marius & Lütjen, Michael, 2015. "Reducing food losses and carbon emission by using autonomous control – A simulation study of the intelligent container," International Journal of Production Economics, Elsevier, vol. 164(C), pages 400-408.
    27. Sohrabi, Somayeh & Ziarati, Koorush & Keshtkaran, Morteza, 2020. "A Greedy Randomized Adaptive Search Procedure for the Orienteering Problem with Hotel Selection," European Journal of Operational Research, Elsevier, vol. 283(2), pages 426-440.
    28. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Bektaş, Tolga, 2015. "The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations," International Journal of Production Economics, Elsevier, vol. 164(C), pages 366-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song Liu & Xiaoyan Ma, 2021. "How Social Networks Affect the Spatiotemporal Planning of Smart Tourism: Evidence from Shanghai," Sustainability, MDPI, vol. 13(13), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Lunwen & Wang, Zhouyiying & Liao, Zhixue & Xiao, Di & Han, Peng & Li, Wenyong & Chen, Qin, 2024. "Multi-day tourism recommendations for urban tourists considering hotel selection: A heuristic optimization approach," Omega, Elsevier, vol. 126(C).
    2. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    3. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    4. Sohrabi, Somayeh & Ziarati, Koorush & Keshtkaran, Morteza, 2020. "A Greedy Randomized Adaptive Search Procedure for the Orienteering Problem with Hotel Selection," European Journal of Operational Research, Elsevier, vol. 283(2), pages 426-440.
    5. CASTRO, Marco & SÖRENSEN, Kenneth & GOOS, Peter & VANSTEENWEGEN, Pieter, 2014. "The multiple travelling salesperson problem with hotel selection," Working Papers 2014030, University of Antwerp, Faculty of Business and Economics.
    6. Divsalar, A. & Vansteenwegen, P. & Sörensen, K. & Cattrysse, D., 2014. "A memetic algorithm for the orienteering problem with hotel selection," European Journal of Operational Research, Elsevier, vol. 237(1), pages 29-49.
    7. CASTRO, Marco & SÖRENSEN, Kenneth & VANSTEENWEGEN, Pieter & GOOS, Peter, 2012. "A simple GRASP+VND for the travelling salesperson problem with hotel selection," Working Papers 2012024, University of Antwerp, Faculty of Business and Economics.
    8. Gläser, Sina & Stücken, Mareike, 2021. "Introduction of an underground waste container system–model and solution approaches," European Journal of Operational Research, Elsevier, vol. 295(2), pages 675-689.
    9. Dulebenets, Maxim A., 2019. "A Delayed Start Parallel Evolutionary Algorithm for just-in-time truck scheduling at a cross-docking facility," International Journal of Production Economics, Elsevier, vol. 212(C), pages 236-258.
    10. Kotiloglu, S. & Lappas, T. & Pelechrinis, K. & Repoussis, P.P., 2017. "Personalized multi-period tour recommendations," Tourism Management, Elsevier, vol. 62(C), pages 76-88.
    11. Maryam Ataei & Ali Divsalar & Morteza Saberi, 2024. "The bi-objective orienteering problem with hotel selection: an integrated text mining optimisation approach," Information Technology and Management, Springer, vol. 25(3), pages 247-275, September.
    12. Tamvada, Srinivas Subramanya & Mansouri, Bahareh & Hassini, Elkafi & Pribytkov, Theodore, 2021. "An integer programming model and directed Steiner-forest based heuristic for routing less-than-truckload freight," International Journal of Production Economics, Elsevier, vol. 232(C).
    13. Maximilian Schiffer & Grit Walther, 2018. "An Adaptive Large Neighborhood Search for the Location-routing Problem with Intra-route Facilities," Transportation Science, INFORMS, vol. 52(2), pages 331-352, March.
    14. Jesus Gonzalez-Feliu, 2013. "Multi-stage LTL transport systems in supply chain management," Post-Print halshs-00796714, HAL.
    15. Schiffer, Maximilian & Schneider, Michael & Laporte, Gilbert, 2018. "Designing sustainable mid-haul logistics networks with intra-route multi-resource facilities," European Journal of Operational Research, Elsevier, vol. 265(2), pages 517-532.
    16. Aldana-Galván, I. & Catana-Salazar, J.C. & Díaz-Báñez, J.M. & Duque, F. & Fabila-Monroy, R. & Heredia, M.A. & Ramírez-Vigueras, A. & Urrutia, J., 2020. "On optimal coverage of a tree with multiple robots," European Journal of Operational Research, Elsevier, vol. 285(3), pages 844-852.
    17. repec:hal:wpaper:halshs-00796714 is not listed on IDEAS
    18. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    19. Gabriel Bazi & John Khoury & F. Jordan Srour, 2017. "Integrating Data Collection Optimization into Pavement Management Systems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 135-146, June.
    20. Dewil, R. & Vansteenwegen, P. & Cattrysse, D. & Van Oudheusden, D., 2015. "A minimum cost network flow model for the maximum covering and patrol routing problem," European Journal of Operational Research, Elsevier, vol. 247(1), pages 27-36.
    21. Markov, Iliya & Varone, Sacha & Bierlaire, Michel, 2016. "Integrating a heterogeneous fixed fleet and a flexible assignment of destination depots in the waste collection VRP with intermediate facilities," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 256-273.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:232:y:2021:i:c:s0925527320303133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.