IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v202y2018icp45-58.html
   My bibliography  Save this article

Aggregate planning with Flexibility Requirements Profile

Author

Listed:
  • Demirel, Edil
  • Özelkan, Ertunga C.
  • Lim, Churlzu

Abstract

Demand uncertainty can cause frequent changes in production plans, which create nervousness in manufacturing companies. Traditional methods used for stabilizing production plans do not provide the adequate flexibility in production plans to handle the random demand. Flexibility Requirements Profile (FRP) is an alternative stabilizing approach, where flexible bounds are enforced on production plans in order to maintain a desired degree of flexibility. In this study, we incorporate FRP into conventional aggregate planning, which is formulated as a mixed-integer linear program with additional constraints to reflect the FRP requirements. To ascertain the effectiveness of the proposed method, several structural results are presented along with a comprehensive numerical study using a design of experiments framework with examples from automotive and textile industries. Based on production costs and production plan stability, the effectiveness of FRP-based aggregate planning is compared to traditional aggregate planning without FRP as well as to FRP planning without optimization. The results show that aggregate planning with FRP can consistently identify more stable production plans without significantly sacrificing the cost objective.

Suggested Citation

  • Demirel, Edil & Özelkan, Ertunga C. & Lim, Churlzu, 2018. "Aggregate planning with Flexibility Requirements Profile," International Journal of Production Economics, Elsevier, vol. 202(C), pages 45-58.
  • Handle: RePEc:eee:proeco:v:202:y:2018:i:c:p:45-58
    DOI: 10.1016/j.ijpe.2018.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527318301920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2018.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiaolong, 2004. "The impact of forecasting methods on the bullwhip effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 15-27, March.
    2. Bredström, D. & Flisberg, P. & Rönnqvist, M., 2013. "A new method for robustness in rolling horizon planning," International Journal of Production Economics, Elsevier, vol. 143(1), pages 41-52.
    3. de Kok, Ton & Inderfurth, Karl, 1997. "Nervousness in inventory management: Comparison of basic control rules," European Journal of Operational Research, Elsevier, vol. 103(1), pages 55-82, November.
    4. Nam, Sang-jin & Logendran, Rasaratnam, 1992. "Aggregate production planning -- A survey of models and methodologies," European Journal of Operational Research, Elsevier, vol. 61(3), pages 255-272, September.
    5. Kimms, A, 1998. "Stability Measures for Rolling Schedules with Applications to Capacity Expansion Planning, Master Production Scheduling, and Lot Sizing," Omega, Elsevier, vol. 26(3), pages 355-366, June.
    6. Pujawan, I. Nyoman & Kingsman, Brian G., 2003. "Properties of lot-sizing rules under lumpy demand," International Journal of Production Economics, Elsevier, vol. 81(1), pages 295-307, January.
    7. Gnoni, M. G. & Iavagnilio, R. & Mossa, G. & Mummolo, G. & Di Leva, A., 2003. "Production planning of a multi-site manufacturing system by hybrid modelling: A case study from the automotive industry," International Journal of Production Economics, Elsevier, vol. 85(2), pages 251-262, August.
    8. Aharon Ben-Tal & Boaz Golany & Arkadi Nemirovski & Jean-Philippe Vial, 2005. "Retailer-Supplier Flexible Commitments Contracts: A Robust Optimization Approach," Manufacturing & Service Operations Management, INFORMS, vol. 7(3), pages 248-271, February.
    9. Joseph D. Blackburn & Dean H. Kropp & Robert A. Millen, 1986. "A Comparison of Strategies to Dampen Nervousness in MRP Systems," Management Science, INFORMS, vol. 32(4), pages 413-429, April.
    10. Mula, J. & Poler, R. & Garcia-Sabater, J.P. & Lario, F.C., 2006. "Models for production planning under uncertainty: A review," International Journal of Production Economics, Elsevier, vol. 103(1), pages 271-285, September.
    11. Tang, Ou & Grubbstrom, Robert W., 2002. "Planning and replanning the master production schedule under demand uncertainty," International Journal of Production Economics, Elsevier, vol. 78(3), pages 323-334, August.
    12. V. Sridharan & William L. Berry & V. Udayabhanu, 1987. "Freezing the Master Production Schedule Under Rolling Planning Horizons," Management Science, INFORMS, vol. 33(9), pages 1137-1149, September.
    13. repec:dau:papers:123456789/2775 is not listed on IDEAS
    14. Robert C. Carlson & James V. Jucker & Dean H. Kropp, 1979. "Less Nervous MRP Systems: A Dynamic Economic Lot-Sizing Approach," Management Science, INFORMS, vol. 25(8), pages 754-761, August.
    15. Jeunet, Jully & Jonard, Nicolas, 2000. "Measuring the performance of lot-sizing techniques in uncertain environments," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 197-208, March.
    16. Dimitris Paraskevopoulos & Elias Karakitsos & Berc Rustem, 1991. "Robust Capacity Planning Under Uncertainty," Management Science, INFORMS, vol. 37(7), pages 787-800, July.
    17. Suvrajeet Sen & Julia L. Higle, 1999. "An Introductory Tutorial on Stochastic Linear Programming Models," Interfaces, INFORMS, vol. 29(2), pages 33-61, April.
    18. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    19. Wang, Reay-Chen & Fang, Hsiao-Hua, 2001. "Aggregate production planning with multiple objectives in a fuzzy environment," European Journal of Operational Research, Elsevier, vol. 133(3), pages 521-536, September.
    20. Charles C. Holt & Franco Modigliani & Herbert A. Simon, 1955. "A Linear Decision Rule for Production and Employment Scheduling," Management Science, INFORMS, vol. 2(1), pages 1-30, October.
    21. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rusindiyanto, 2023. "Production Planning and Control of Flooring Using Aggregate Planning Method," Technium, Technium Science, vol. 16(1), pages 397-404.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meixell, Mary J., 2005. "The impact of setup costs, commonality, and capacity on schedule stability: An exploratory study," International Journal of Production Economics, Elsevier, vol. 95(1), pages 95-107, January.
    2. Donya Rahmani & Arash Zandi & Sara Behdad & Arezou Entezaminia, 2021. "A light robust model for aggregate production planning with consideration of environmental impacts of machines," Operational Research, Springer, vol. 21(1), pages 273-297, March.
    3. Shih-Pin Chen & Wen-Lung Huang, 2014. "Solving Fuzzy Multiproduct Aggregate Production Planning Problems Based on Extension Principle," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-18, August.
    4. Pereira, Daniel Filipe & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Design of a sales plan in a hybrid contractual and non-contractual context in a setting of limited capacity: A robust approach," International Journal of Production Economics, Elsevier, vol. 260(C).
    5. Mula, Josefa & Peidro, David & Poler, Raul, 2010. "The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand," International Journal of Production Economics, Elsevier, vol. 128(1), pages 136-143, November.
    6. Mirzapour Al-e-hashem, S.M.J. & Malekly, H. & Aryanezhad, M.B., 2011. "A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty," International Journal of Production Economics, Elsevier, vol. 134(1), pages 28-42, November.
    7. Sivadasan, Suja & Smart, Janet & Huaccho Huatuco, Luisa & Calinescu, Anisoara, 2013. "Reducing schedule instability by identifying and omitting complexity-adding information flows at the supplier–customer interface," International Journal of Production Economics, Elsevier, vol. 145(1), pages 253-262.
    8. Sahin, Funda & Powell Robinson, E. & Gao, Li-Lian, 2008. "Master production scheduling policy and rolling schedules in a two-stage make-to-order supply chain," International Journal of Production Economics, Elsevier, vol. 115(2), pages 528-541, October.
    9. João Flávio de Freitas Almeida & Samuel Vieira Conceição & Luiz Ricardo Pinto & Ricardo Saraiva de Camargo & Gilberto de Miranda Júnior, 2018. "Flexibility evaluation of multiechelon supply chains," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-27, March.
    10. Carlos Herrera & Sana Belmokhtar-Berraf & André Thomas & Víctor Parada, 2016. "A reactive decision-making approach to reduce instability in a master production schedule," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2394-2404, April.
    11. Zhao, Xiande & Lam, Kokin, 1997. "Lot-sizing rules and freezing the master production schedule in material requirements planning systems," International Journal of Production Economics, Elsevier, vol. 53(3), pages 281-305, December.
    12. Kimms, A, 1998. "Stability Measures for Rolling Schedules with Applications to Capacity Expansion Planning, Master Production Scheduling, and Lot Sizing," Omega, Elsevier, vol. 26(3), pages 355-366, June.
    13. Tarim, S. Armagan & Kingsman, Brian G., 2006. "Modelling and computing (Rn, Sn) policies for inventory systems with non-stationary stochastic demand," European Journal of Operational Research, Elsevier, vol. 174(1), pages 581-599, October.
    14. Andrea Borenich & Peter Greistorfer & Marc Reimann, 2020. "Model-based production cost estimation to support bid processes: an automotive case study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 841-868, September.
    15. Leung, Stephen C.H. & Tsang, Sally O.S. & Ng, W.L. & Wu, Yue, 2007. "A robust optimization model for multi-site production planning problem in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 181(1), pages 224-238, August.
    16. Barba-Gutierrez, Y. & Adenso-Diaz, B. & Gupta, S.M., 2008. "Lot sizing in reverse MRP for scheduling disassembly," International Journal of Production Economics, Elsevier, vol. 111(2), pages 741-751, February.
    17. Wang, Reay-Chen & Liang, Tien-Fu, 2005. "Applying possibilistic linear programming to aggregate production planning," International Journal of Production Economics, Elsevier, vol. 98(3), pages 328-341, December.
    18. Charles, Mehdi & Dauzère-Pérès, Stéphane & Kedad-Sidhoum, Safia & Mazhoud, Issam, 2022. "Motivations and analysis of the capacitated lot-sizing problem with setup times and minimum and maximum ending inventories," European Journal of Operational Research, Elsevier, vol. 302(1), pages 203-220.
    19. Laurent Lim, Lâm & Alpan, Gülgün & Penz, Bernard, 2014. "Reconciling sales and operations management with distant suppliers in the automotive industry: A simulation approach," International Journal of Production Economics, Elsevier, vol. 151(C), pages 20-36.
    20. Friederike Wall, 2024. "Incomplete incentive contracts in complex task environments: an agent-based simulation with minimal intelligence agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 19(3), pages 523-552, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:202:y:2018:i:c:p:45-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.