IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v164y2015icp454-461.html
   My bibliography  Save this article

Development of a cloud-based service framework for energy conservation in a sustainable intelligent transportation system

Author

Listed:
  • Hsu, Chia-Yu
  • Yang, Chin-Sheng
  • Yu, Liang-Chih
  • Lin, Chi-Fang
  • Yao, Hsiu-Hsen
  • Chen, Duan-Yu
  • Robert Lai, K.
  • Chang, Pei-Chann

Abstract

The research aims to develop a cloud-based service framework for reducing carbon dioxide emission and fuel consumption in intelligent transportation system. It collects traffic condition, driving behavior, and video through telematics and digital tachygraphy and road-side cameras to facilitate advanced data analytics for the reduction of fuel consumption. There are three specific features regarding this framework. First, a transportation cloud is built for the storage of massive data and video. This cloud-based system not only avoids the use of hard disks at client-site for energy conservation and reliability improvement, but also allows the back-end data analytics at both server and client sites. Second, a real-time traffic condition analytic was developed by mobile machine vision techniques based on video and data collected from road-side cameras to analyze and recognize traffic conditions, such as traffic flow, braking events, traffic lights, and count-down timers. Then, a fuel-efficient route navigation technology is also developed for eco-driving based on real time traffic information and a dynamic shortest path algorithm for saving time and fuel consumption. Third, a sequential pattern mining model was proposed to diagnose misguided driving behavior for eco-driving based on the real-time data collected from digital tachygraphy and on-board diagnostics system. Furthermore, an e-Learning visualization system was developed to provide advice and instruction for correction of misguided driving behavior. Indeed, the fuel consumption and power consumption can be reduced simultaneously based on the proposed framework regarding cloud-based system and eco-driving.

Suggested Citation

  • Hsu, Chia-Yu & Yang, Chin-Sheng & Yu, Liang-Chih & Lin, Chi-Fang & Yao, Hsiu-Hsen & Chen, Duan-Yu & Robert Lai, K. & Chang, Pei-Chann, 2015. "Development of a cloud-based service framework for energy conservation in a sustainable intelligent transportation system," International Journal of Production Economics, Elsevier, vol. 164(C), pages 454-461.
  • Handle: RePEc:eee:proeco:v:164:y:2015:i:c:p:454-461
    DOI: 10.1016/j.ijpe.2014.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527314002722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2014.08.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barkenbus, Jack N., 2010. "Eco-driving: An overlooked climate change initiative," Energy Policy, Elsevier, vol. 38(2), pages 762-769, February.
    2. Sundarakani, Balan & de Souza, Robert & Goh, Mark & Wagner, Stephan M. & Manikandan, Sushmera, 2010. "Modeling carbon footprints across the supply chain," International Journal of Production Economics, Elsevier, vol. 128(1), pages 43-50, November.
    3. Grant-Muller, Susan & Usher, Mark, 2014. "Intelligent Transport Systems: The propensity for environmental and economic benefits," Technological Forecasting and Social Change, Elsevier, vol. 82(C), pages 149-166.
    4. Papagiannaki, Katerina & Diakoulaki, Danae, 2009. "Decomposition analysis of CO2 emissions from passenger cars: The cases of Greece and Denmark," Energy Policy, Elsevier, vol. 37(8), pages 3259-3267, August.
    5. Li, Hongqi & Lu, Yue & Zhang, Jun & Wang, Tianyi, 2013. "Trends in road freight transportation carbon dioxide emissions and policies in China," Energy Policy, Elsevier, vol. 57(C), pages 99-106.
    6. Saboohi, Y. & Farzaneh, H., 2009. "Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption," Applied Energy, Elsevier, vol. 86(10), pages 1925-1932, October.
    7. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    8. Kwon, Tae-Hyeong, 2005. "Decomposition of factors determining the trend of CO2 emissions from car travel in Great Britain (1970-2000)," Ecological Economics, Elsevier, vol. 53(2), pages 261-275, April.
    9. Boriboonsomsin, Kanok & Vu, Alexander & Barth, Matthew, 2010. "Eco-Driving: Pilot Evaluation of Driving Behavior Changes Among U.S. Drivers," University of California Transportation Center, Working Papers qt9z18z7xq, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    2. Li, Yangyang & Duan, Xiongbo & Fu, Jianqin & Liu, Jingping & Wang, Shuqian & Dong, Hao & Xie, Yunkun, 2019. "Development of a method for on-board measurement of instant engine torque and fuel consumption rate based on direct signal measurement and RGF modelling under vehicle transient operating conditions," Energy, Elsevier, vol. 189(C).
    3. Ali Keyvanfar & Arezou Shafaghat & Nasiru Zakari Muhammad & M. Salim Ferwati, 2018. "Driving Behaviour and Sustainable Mobility—Policies and Approaches Revisited," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    4. Guangxu Li & Lingyu Wang & Jie Hu, 2023. "Integration with Visual Perception—Research on the Usability of a Data Visualization Interface Layout in Zero-Carbon Parks Based on Eye-Tracking Technology," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    5. Omid Ghaffarpasand & Mark Burke & Louisa K. Osei & Helen Ursell & Sam Chapman & Francis D. Pope, 2022. "Vehicle Telematics for Safer, Cleaner and More Sustainable Urban Transport: A Review," Sustainability, MDPI, vol. 14(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Jiang & Peng Wu & Chengke Wu, 2022. "Driving Factors behind Energy-Related Carbon Emissions in the U.S. Road Transport Sector: A Decomposition Analysis," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    2. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
    3. Barla, Philippe & Gilbert-Gonthier, Mathieu & Lopez Castro, Marco Antonio & Miranda-Moreno, Luis, 2017. "Eco-driving training and fuel consumption: Impact, heterogeneity and sustainability," Energy Economics, Elsevier, vol. 62(C), pages 187-194.
    4. Alejandro G. Tuero & Laura Pozueco & Roberto García & Gabriel Díaz & Xabiel G. Pañeda & David Melendi & Abel Rionda & David Martínez, 2017. "Economic Impact of the Use of Inertia in an Urban Bus Company," Energies, MDPI, vol. 10(7), pages 1-17, July.
    5. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    6. Geoffrey Udoka Nnadiri & Anthony S. F. Chiu & Jose Bienvenido Manuel Biona & Neil Stephen Lopez, 2021. "Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    7. Foster,Vivien & Dim,Jennifer Uju & Vollmer,Sebastian & Zhang,Fan, 2021. "Understanding Drivers of Decoupling of Global Transport CO2 Emissions from Economic Growth :Evidence from 145 Countries," Policy Research Working Paper Series 9809, The World Bank.
    8. Xu, Jin-Hua & Guo, Jian-Feng & Peng, Binbin & Nie, Hongguang & Kemp, Rene, 2020. "Energy growth sources and future energy-saving potentials in passenger transportation sector in China," Energy, Elsevier, vol. 206(C).
    9. Carvalho, Irene & Baier, Thomas & Simoes, Ricardo & Silva, Arlindo, 2012. "Reducing fuel consumption through modular vehicle architectures," Applied Energy, Elsevier, vol. 93(C), pages 556-563.
    10. Shankar, Ravi & Pathak, Devendra Kumar & Choudhary, Devendra, 2019. "Decarbonizing freight transportation: An integrated EFA-TISM approach to model enablers of dedicated freight corridors," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 85-100.
    11. Arne Höltl & Cathy Macharis & Klaas De Brucker, 2017. "Pathways to Decarbonise the European Car Fleet: A Scenario Analysis Using the Backcasting Approach," Energies, MDPI, vol. 11(1), pages 1-20, December.
    12. Carlos-Alberto Domínguez-Báez & Ricardo Mendoza-González & Huizilopoztli Luna-García & Mario Alberto Rodríguez-Díaz & Francisco Javier Luna-Rosas & Julio César Martínez-Romo & José M. Celaya-Padilla &, 2021. "A Methodological Process for the Design of Frameworks Oriented to Infotainment User Interfaces," Sustainability, MDPI, vol. 13(11), pages 1-14, May.
    13. Roberto Garcia & Gabriel Diaz & Xabiel G. Pañeda & Alejandro G. Tuero & Laura Pozueco & David Melendi & Jose A. Sanchez & Victor Corcoba & Alejandro G. Pañeda, 2017. "Impact of Efficient Driving in Professional Bus Fleets," Energies, MDPI, vol. 10(12), pages 1-25, December.
    14. Yann Bouchery & Asma Ghaffari & Zied Jemai & Jan Fransoo, 2016. "Sustainable transportation and order quantity: insights from multiobjective optimization," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 367-396, September.
    15. Alam, Md. Saniul & McNabola, Aonghus, 2014. "A critical review and assessment of Eco-Driving policy & technology: Benefits & limitations," Transport Policy, Elsevier, vol. 35(C), pages 42-49.
    16. Sanguinetti, Angela, 2018. "Onboard Feedback to Promote Eco-Driving: Average Impact and Important Features," Institute of Transportation Studies, Working Paper Series qt99m5j3q7, Institute of Transportation Studies, UC Davis.
    17. Stillwater, Tai & Kurani, Kenneth S., 2012. "Goal Setting, Framing, and Anchoring Responses to Ecodriving Feedback," Institute of Transportation Studies, Working Paper Series qt9k86f889, Institute of Transportation Studies, UC Davis.
    18. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    19. Liu, Jun & Feng, Tingting & Yang, Xi, 2011. "The energy requirements and carbon dioxide emissions of tourism industry of Western China: A case of Chengdu city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2887-2894, August.
    20. Y Bouchery & Asma Ghaffari & Zied Jemai & Jan C Fransoo, 2016. "Sustainable transportation and order quantity: insights from multiobjective optimization," Post-Print hal-01954465, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:164:y:2015:i:c:p:454-461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.